Multiobjective Geometric Programming Problem Under Uncertainty
Multiobjective geometric programming (MOGP) is a powerful optimization technique widely used for solving a variety of nonlinear optimization problems and engineering problems. Generally, the parameters of a multiobjective geometric programming (MOGP) models are assumed to be deterministic and fixed....
Uloženo v:
| Vydáno v: | Operations research and decisions Ročník 27; číslo no. 4; s. 85 - 109 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Wrocław University of Science and Technology
01.01.2017
|
| ISSN: | 2081-8858, 2391-6060 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Multiobjective geometric programming (MOGP) is a powerful optimization technique widely used for solving a variety of nonlinear optimization problems and engineering problems. Generally, the parameters of a multiobjective geometric programming (MOGP) models are assumed to be deterministic and fixed. However, the values observed for the parameters in real-world MOGP problems are often imprecise and subject to fluctuations. Therefore, we use MOGP within an uncertainty based framework and propose a MOGP model whose coefficients are uncertain in nature. We assume the uncertain variables (UVs) to have linear, normal or zigzag uncertainty distributions and show that the corresponding uncertain chance-constrained multiobjective geometric programming (UCCMOGP) problems can be transformed into conventional MOGP problems to calculate the objective values. The paper develops a procedure to solve a UCCMOGP problem using an MOGP technique based on a weighted-sum method. The efficacy of this procedure is demonstrated by some numerical examples. (original abstract) |
|---|---|
| ISSN: | 2081-8858 2391-6060 |
| DOI: | 10.5277/ord170405 |