Deep Learning-Based Object Detection Algorithms
One of the main areas of study in computer vision is object detection. It can identify the type and location of target items and determine whether they are present in pictures or movies. With the development of deep learning, Object detection algorithms have seen significant enhancements in both spe...
Uložené v:
| Vydané v: | ITM web of conferences Ročník 73; s. 02024 |
|---|---|
| Hlavný autor: | |
| Médium: | Konferenčný príspevok.. Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Les Ulis
EDP Sciences
01.01.2025
|
| Predmet: | |
| ISSN: | 2431-7578, 2271-2097 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | One of the main areas of study in computer vision is object detection. It can identify the type and location of target items and determine whether they are present in pictures or movies. With the development of deep learning, Object detection algorithms have seen significant enhancements in both speed and accuracy, leading to extensive adoption across various domains, including autonomous driving, drone surveillance, and security monitoring. This article examines some of the most well-known algorithms from the deep learning period, classifies them into four types of object identification algorithms—two-stage, one-stage, keypoint-based, and transformer-based — and describes their primary advances, benefits, and drawbacks. Furthermore, this work organizes target detection datasets and performance evaluation indicators that are routinely used in studies and provides detailed explanations of their content and properties. The paper adds to the study and advancement of target detection technology-related domains and serves as a useful resource for practitioners and scholars. |
|---|---|
| AbstractList | One of the main areas of study in computer vision is object detection. It can identify the type and location of target items and determine whether they are present in pictures or movies. With the development of deep learning, Object detection algorithms have seen significant enhancements in both speed and accuracy, leading to extensive adoption across various domains, including autonomous driving, drone surveillance, and security monitoring. This article examines some of the most well-known algorithms from the deep learning period, classifies them into four types of object identification algorithms—two-stage, one-stage, keypoint-based, and transformer-based — and describes their primary advances, benefits, and drawbacks. Furthermore, this work organizes target detection datasets and performance evaluation indicators that are routinely used in studies and provides detailed explanations of their content and properties. The paper adds to the study and advancement of target detection technology-related domains and serves as a useful resource for practitioners and scholars. |
| Author | Yao, Linxi |
| Author_xml | – sequence: 1 givenname: Linxi surname: Yao fullname: Yao, Linxi |
| BookMark | eNotjsFOAjEURRuDiYh8gZtJXI-0r-10ukQQJSFho-tJp33FTmCKnWHh39uIq3Nz897JvSeTPvZIyCOjz4xKtgjjycbeL4CCVJxmiBsyBVCsBKrVJGfBWamkqu_IfBg6SimTdcWgmpLFGvFc7NCkPvSH8sUM6Ip926EdizWOGSH2xfJ4iCmMX6fhgdx6cxxw_s8Z-dy8fqzey93-bbta7krHuBalaQUIi9DqylG0StkWPRgwBlVFHdaQh0oAbhwXnCN44ZS3zjuQWhrDZ2R79bpouuacwsmknyaa0PwVMR0ak8Zgj9hwlu8lRwGWC6tcbbVwQFsG3tea2-x6urrOKX5fcBibLl5Sn-fnXy0qpkFX_BdDL2Iq |
| ContentType | Conference Proceeding Journal Article |
| Copyright | 2025. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
| DBID | 3V. 7SC 7TB 7U5 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ H8D HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
| DOI | 10.1051/itmconf/20257302024 |
| DatabaseName | ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student Aerospace Database SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic Directory of Open Access Journals |
| DatabaseTitle | Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2271-2097 |
| ExternalDocumentID | oai_doaj_org_article_31aa353e42c34c7d8c94d20b12ff893c |
| Genre | Conference Proceeding |
| GroupedDBID | 3V. 5VS 7SC 7TB 7U5 7XB 8AL 8FD 8FE 8FG 8FK AAFWJ ABJCF ABUWG ADBBV ADMLS AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU DWQXO EBS FR3 GI~ GNUQQ GROUPED_DOAJ H8D HCIFZ JQ2 K6V K7- KR7 L6V L7M L~C L~D M0N M7S M~E OK1 P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC PTHSS Q9U |
| ID | FETCH-LOGICAL-d1394-ab424ce2b96d0ec77cbef2a2aae760de823025223ad3433e2f4d7fcdfd2595aa3 |
| IEDL.DBID | K7- |
| ISSN | 2431-7578 |
| IngestDate | Tue Oct 14 19:03:30 EDT 2025 Fri Jul 25 11:47:25 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-d1394-ab424ce2b96d0ec77cbef2a2aae760de823025223ad3433e2f4d7fcdfd2595aa3 |
| Notes | ObjectType-Conference Proceeding-1 SourceType-Conference Papers & Proceedings-1 content type line 21 |
| OpenAccessLink | https://www.proquest.com/docview/3194619296?pq-origsite=%requestingapplication% |
| PQID | 3194619296 |
| PQPubID | 2040552 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_31aa353e42c34c7d8c94d20b12ff893c proquest_journals_3194619296 |
| PublicationCentury | 2000 |
| PublicationDate | 20250101 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 20250101 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Les Ulis |
| PublicationPlace_xml | – name: Les Ulis |
| PublicationTitle | ITM web of conferences |
| PublicationYear | 2025 |
| Publisher | EDP Sciences |
| Publisher_xml | – name: EDP Sciences |
| SSID | ssj0001586126 |
| Score | 2.278735 |
| Snippet | One of the main areas of study in computer vision is object detection. It can identify the type and location of target items and determine whether they are... |
| SourceID | doaj proquest |
| SourceType | Open Website Aggregation Database |
| StartPage | 02024 |
| SubjectTerms | Algorithms Computer vision Deep learning Machine learning Object recognition Performance evaluation Target detection |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxcDCN6JQkAfWqIntxMnYUioGVBhA6hb541wq0bRqU34_58SVKjGwMEWK8uXni-89x3lHyEPKbJFo4SLjuBcoMo60FBDlGD2Z0IkAaNz1X-Rkkk-nxdteqS-_Jqy1B26B6_NEKZ5yEMxwYaTNTSEsi3XCnMNca_zoi6xnT0y1_wfnmLqznc1QmvTn9QIFpvNiP8Woxo0INv2_RuEmtYxPyXHghHTQPssZOYDqnJzs6i3Q8PpdkP4IYEWDI-osGmICsvRV-5kUOoK6WVRV0cHXbImK_3OxuSQf46f3x-coFDyILBIxESktmDDAdJHZGIyURoNjiikFMost-I9iDAkTV5YLzoE5YaUz1lkUMSnidEU61bKCa0JZbJEcGG8WZfBQT6xiZhleJ3Gau7xLhr7t5ar1tCi9y3SzA7EvA_blX9h3SW-HXBlCf4MnFcKrsiK7-Y973JIj32XtrEePdOr1Fu7Iofmu55v1fdPrP7qcsK0 priority: 102 providerName: Directory of Open Access Journals |
| Title | Deep Learning-Based Object Detection Algorithms |
| URI | https://www.proquest.com/docview/3194619296 https://doaj.org/article/31aa353e42c34c7d8c94d20b12ff893c |
| Volume | 73 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagZWAqT1EoVQZWq4ntxMmEKG0FAkrEQyosUfwqleiDNvD7OacuHZBYWBIpjpzocuf77nz5DqGzkKgkEMxgaagNULiPBWcax6A9ERMB07pk17_l_X48GCSpS7gtXFnlak0sF2o1lTZH3gJVYRbsJ9H57APbrlF2d9W10NhE1YCQwOr5DcfrHEsYgwMv-8uBn8SWun1FPBQGrVExhpDT2PA_BD2HE3PE_b_W5dLZ9Gr_fc0ddLD-j89LfzzULtrQkz1UWzVy8Jxd76NWR-uZ56hWh7gNnk1598KmaLyOLspqrYl38T6EJxVv48UBeu51ny6vsOukgBUgPIZzwQiTmogkUr6WnEuhDclJnmse-Urb3TYCSIzmijJKNTFMcSOVURAdhXlOD1FlMp3oI-QRXwHqkJaFSsKtFrH5RBGYJzCCmriO2laE2WxJlpFZ-urywnQ-zJw1ZDSAOUOqGZGUSa5imTBFfBEQYwBAyTpqrKSbOZtaZGvRHv89fIK27TddJkoaqFLMP_Up2pJfxWgxb6Jqu9tPH5pl9N0sFaZpKz4f4ZiGrzCeXt-lL9-hLMkC |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB7xkuDEY1nB8soBjlYT26mTA0JAQaCWwgEkbtnYHhckaLttdhF_it_IOE3oYSVuHDhFSqJR4hnPfDO2vwHYj7lNIy0dM074BEWFTCuJLCHraUodScSSXb-jut3k_j69mYG3-iyM31ZZ-8TSUduB8TXyBpmK9GA_bR4N_zDfNcqvrtYtNCZm0cbXF0rZxoeXLdLvAefnZ7enF6zqKsAsoR3Jci25NMh12rQhGqWMRsdznueomqFFv_LECZWI3AopBHInrXLGOkuZQpznguTOwrwUifJc_W3FpjWdOCHAUPazo7jMPFV8TXQUR43H4plSXOfLDTHNK7rIqlHAf3GgDG7ny99tWFZgfXpOMbj5iMCrMIP9NViuG1UEld_6AY0W4jCoqGR77IQitw2utS9BBS0syt1o_eD4qUd_Vjw8j9fh7ks-_ifM9Qd93ICAh5ZQlfEsW4Ze9Yg05JaTnMhp4ZJNOPEqy4YTMpDM03OXNwajXlbN9kxEJDMWKLkR0iibmFRaHuqIO0cA0WzCdq3NrPIZ42yqyl-fP96DxYvbq07Wuey2t2DJ29OkKLQNc8XoL-7AgvlXPI5Hu6V5BvD7qxX_DmvAIdo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=ITM+web+of+conferences&rft.atitle=Deep+Learning-Based+Object+Detection+Algorithms&rft.au=Yao%2C+Linxi&rft.date=2025-01-01&rft.pub=EDP+Sciences&rft.issn=2431-7578&rft.eissn=2271-2097&rft.volume=73&rft_id=info:doi/10.1051%2Fitmconf%2F20257302024 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2431-7578&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2431-7578&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2431-7578&client=summon |