Deep Learning-Based Object Detection Algorithms

One of the main areas of study in computer vision is object detection. It can identify the type and location of target items and determine whether they are present in pictures or movies. With the development of deep learning, Object detection algorithms have seen significant enhancements in both spe...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:ITM web of conferences Ročník 73; s. 02024
Hlavný autor: Yao, Linxi
Médium: Konferenčný príspevok.. Journal Article
Jazyk:English
Vydavateľské údaje: Les Ulis EDP Sciences 01.01.2025
Predmet:
ISSN:2431-7578, 2271-2097
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract One of the main areas of study in computer vision is object detection. It can identify the type and location of target items and determine whether they are present in pictures or movies. With the development of deep learning, Object detection algorithms have seen significant enhancements in both speed and accuracy, leading to extensive adoption across various domains, including autonomous driving, drone surveillance, and security monitoring. This article examines some of the most well-known algorithms from the deep learning period, classifies them into four types of object identification algorithms—two-stage, one-stage, keypoint-based, and transformer-based — and describes their primary advances, benefits, and drawbacks. Furthermore, this work organizes target detection datasets and performance evaluation indicators that are routinely used in studies and provides detailed explanations of their content and properties. The paper adds to the study and advancement of target detection technology-related domains and serves as a useful resource for practitioners and scholars.
AbstractList One of the main areas of study in computer vision is object detection. It can identify the type and location of target items and determine whether they are present in pictures or movies. With the development of deep learning, Object detection algorithms have seen significant enhancements in both speed and accuracy, leading to extensive adoption across various domains, including autonomous driving, drone surveillance, and security monitoring. This article examines some of the most well-known algorithms from the deep learning period, classifies them into four types of object identification algorithms—two-stage, one-stage, keypoint-based, and transformer-based — and describes their primary advances, benefits, and drawbacks. Furthermore, this work organizes target detection datasets and performance evaluation indicators that are routinely used in studies and provides detailed explanations of their content and properties. The paper adds to the study and advancement of target detection technology-related domains and serves as a useful resource for practitioners and scholars.
Author Yao, Linxi
Author_xml – sequence: 1
  givenname: Linxi
  surname: Yao
  fullname: Yao, Linxi
BookMark eNotjsFOAjEURRuDiYh8gZtJXI-0r-10ukQQJSFho-tJp33FTmCKnWHh39uIq3Nz897JvSeTPvZIyCOjz4xKtgjjycbeL4CCVJxmiBsyBVCsBKrVJGfBWamkqu_IfBg6SimTdcWgmpLFGvFc7NCkPvSH8sUM6Ip926EdizWOGSH2xfJ4iCmMX6fhgdx6cxxw_s8Z-dy8fqzey93-bbta7krHuBalaQUIi9DqylG0StkWPRgwBlVFHdaQh0oAbhwXnCN44ZS3zjuQWhrDZ2R79bpouuacwsmknyaa0PwVMR0ak8Zgj9hwlu8lRwGWC6tcbbVwQFsG3tea2-x6urrOKX5fcBibLl5Sn-fnXy0qpkFX_BdDL2Iq
ContentType Conference Proceeding
Journal Article
Copyright 2025. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
DBID 3V.
7SC
7TB
7U5
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
H8D
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.1051/itmconf/20257302024
DatabaseName ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
Aerospace Database
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
Directory of Open Access Journals
DatabaseTitle Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2271-2097
ExternalDocumentID oai_doaj_org_article_31aa353e42c34c7d8c94d20b12ff893c
Genre Conference Proceeding
GroupedDBID 3V.
5VS
7SC
7TB
7U5
7XB
8AL
8FD
8FE
8FG
8FK
AAFWJ
ABJCF
ABUWG
ADBBV
ADMLS
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
DWQXO
EBS
FR3
GI~
GNUQQ
GROUPED_DOAJ
H8D
HCIFZ
JQ2
K6V
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
PTHSS
Q9U
ID FETCH-LOGICAL-d1394-ab424ce2b96d0ec77cbef2a2aae760de823025223ad3433e2f4d7fcdfd2595aa3
IEDL.DBID K7-
ISSN 2431-7578
IngestDate Tue Oct 14 19:03:30 EDT 2025
Fri Jul 25 11:47:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d1394-ab424ce2b96d0ec77cbef2a2aae760de823025223ad3433e2f4d7fcdfd2595aa3
Notes ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21
OpenAccessLink https://www.proquest.com/docview/3194619296?pq-origsite=%requestingapplication%
PQID 3194619296
PQPubID 2040552
ParticipantIDs doaj_primary_oai_doaj_org_article_31aa353e42c34c7d8c94d20b12ff893c
proquest_journals_3194619296
PublicationCentury 2000
PublicationDate 20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 20250101
  day: 01
PublicationDecade 2020
PublicationPlace Les Ulis
PublicationPlace_xml – name: Les Ulis
PublicationTitle ITM web of conferences
PublicationYear 2025
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
SSID ssj0001586126
Score 2.278735
Snippet One of the main areas of study in computer vision is object detection. It can identify the type and location of target items and determine whether they are...
SourceID doaj
proquest
SourceType Open Website
Aggregation Database
StartPage 02024
SubjectTerms Algorithms
Computer vision
Deep learning
Machine learning
Object recognition
Performance evaluation
Target detection
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxcDCN6JQkAfWqIntxMnYUioGVBhA6hb541wq0bRqU34_58SVKjGwMEWK8uXni-89x3lHyEPKbJFo4SLjuBcoMo60FBDlGD2Z0IkAaNz1X-Rkkk-nxdteqS-_Jqy1B26B6_NEKZ5yEMxwYaTNTSEsi3XCnMNca_zoi6xnT0y1_wfnmLqznc1QmvTn9QIFpvNiP8Woxo0INv2_RuEmtYxPyXHghHTQPssZOYDqnJzs6i3Q8PpdkP4IYEWDI-osGmICsvRV-5kUOoK6WVRV0cHXbImK_3OxuSQf46f3x-coFDyILBIxESktmDDAdJHZGIyURoNjiikFMost-I9iDAkTV5YLzoE5YaUz1lkUMSnidEU61bKCa0JZbJEcGG8WZfBQT6xiZhleJ3Gau7xLhr7t5ar1tCi9y3SzA7EvA_blX9h3SW-HXBlCf4MnFcKrsiK7-Y973JIj32XtrEePdOr1Fu7Iofmu55v1fdPrP7qcsK0
  priority: 102
  providerName: Directory of Open Access Journals
Title Deep Learning-Based Object Detection Algorithms
URI https://www.proquest.com/docview/3194619296
https://doaj.org/article/31aa353e42c34c7d8c94d20b12ff893c
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagZWAqT1EoVQZWq4ntxMmEKG0FAkrEQyosUfwqleiDNvD7OacuHZBYWBIpjpzocuf77nz5DqGzkKgkEMxgaagNULiPBWcax6A9ERMB07pk17_l_X48GCSpS7gtXFnlak0sF2o1lTZH3gJVYRbsJ9H57APbrlF2d9W10NhE1YCQwOr5DcfrHEsYgwMv-8uBn8SWun1FPBQGrVExhpDT2PA_BD2HE3PE_b_W5dLZ9Gr_fc0ddLD-j89LfzzULtrQkz1UWzVy8Jxd76NWR-uZ56hWh7gNnk1598KmaLyOLspqrYl38T6EJxVv48UBeu51ny6vsOukgBUgPIZzwQiTmogkUr6WnEuhDclJnmse-Urb3TYCSIzmijJKNTFMcSOVURAdhXlOD1FlMp3oI-QRXwHqkJaFSsKtFrH5RBGYJzCCmriO2laE2WxJlpFZ-urywnQ-zJw1ZDSAOUOqGZGUSa5imTBFfBEQYwBAyTpqrKSbOZtaZGvRHv89fIK27TddJkoaqFLMP_Up2pJfxWgxb6Jqu9tPH5pl9N0sFaZpKz4f4ZiGrzCeXt-lL9-hLMkC
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB7xkuDEY1nB8soBjlYT26mTA0JAQaCWwgEkbtnYHhckaLttdhF_it_IOE3oYSVuHDhFSqJR4hnPfDO2vwHYj7lNIy0dM074BEWFTCuJLCHraUodScSSXb-jut3k_j69mYG3-iyM31ZZ-8TSUduB8TXyBpmK9GA_bR4N_zDfNcqvrtYtNCZm0cbXF0rZxoeXLdLvAefnZ7enF6zqKsAsoR3Jci25NMh12rQhGqWMRsdznueomqFFv_LECZWI3AopBHInrXLGOkuZQpznguTOwrwUifJc_W3FpjWdOCHAUPazo7jMPFV8TXQUR43H4plSXOfLDTHNK7rIqlHAf3GgDG7ny99tWFZgfXpOMbj5iMCrMIP9NViuG1UEld_6AY0W4jCoqGR77IQitw2utS9BBS0syt1o_eD4qUd_Vjw8j9fh7ks-_ifM9Qd93ICAh5ZQlfEsW4Ze9Yg05JaTnMhp4ZJNOPEqy4YTMpDM03OXNwajXlbN9kxEJDMWKLkR0iibmFRaHuqIO0cA0WzCdq3NrPIZ42yqyl-fP96DxYvbq07Wuey2t2DJ29OkKLQNc8XoL-7AgvlXPI5Hu6V5BvD7qxX_DmvAIdo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=ITM+web+of+conferences&rft.atitle=Deep+Learning-Based+Object+Detection+Algorithms&rft.au=Yao%2C+Linxi&rft.date=2025-01-01&rft.pub=EDP+Sciences&rft.issn=2431-7578&rft.eissn=2271-2097&rft.volume=73&rft_id=info:doi/10.1051%2Fitmconf%2F20257302024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2431-7578&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2431-7578&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2431-7578&client=summon