Optimal performance of simple low-cost optical physical unclonable functions resilient to machine learning attacks

In this paper we reconsider Physical Unclonable Functions based on the traditional approach of optical scattering to randomly disordered optical media. These devices have the major advantage of utilization of simple and very low-cost technology and therefore the potential to be installed all over th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 15; H. 1; S. 40079 - 15
Hauptverfasser: Akriotou, Marialena, Bartsokas, Theodoros, Veinidis, Christos, Syvridis, Dimitris
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group 01.11.2025
Nature Portfolio
Schlagworte:
ISSN:2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper we reconsider Physical Unclonable Functions based on the traditional approach of optical scattering to randomly disordered optical media. These devices have the major advantage of utilization of simple and very low-cost technology and therefore the potential to be installed all over the network providing critical cybersecurity operations such authentication, real time cryptographic key generation and generation of trues random sequences. To comply with the requirements of the aforementioned operations, critical issues must be resolved. We propose and implement algorithms for the generation of an almost unlimited number of uncorrelated optical challenges. We show experimentally that the uncorrelated challenges result in optical speckle which, after the proper numerical processing, produce true random sequences. Moreover, we determine the optimal illumination conditions to achieve the best possible performance in terms of robustness and unpredictability. Last but not least, we studied the resilience of the PUF against machine learning attacks. We conclude experimentally that under certain illuminating conditions and using the aforementioned uncorrelated challenges, the network cannot predict the responses even after being trained with a very large number of challenge responses (24,000 pairs).
AbstractList Abstract In this paper we reconsider Physical Unclonable Functions based on the traditional approach of optical scattering to randomly disordered optical media. These devices have the major advantage of utilization of simple and very low-cost technology and therefore the potential to be installed all over the network providing critical cybersecurity operations such authentication, real time cryptographic key generation and generation of trues random sequences. To comply with the requirements of the aforementioned operations, critical issues must be resolved. We propose and implement algorithms for the generation of an almost unlimited number of uncorrelated optical challenges. We show experimentally that the uncorrelated challenges result in optical speckle which, after the proper numerical processing, produce true random sequences. Moreover, we determine the optimal illumination conditions to achieve the best possible performance in terms of robustness and unpredictability. Last but not least, we studied the resilience of the PUF against machine learning attacks. We conclude experimentally that under certain illuminating conditions and using the aforementioned uncorrelated challenges, the network cannot predict the responses even after being trained with a very large number of challenge responses (24,000 pairs).
In this paper we reconsider Physical Unclonable Functions based on the traditional approach of optical scattering to randomly disordered optical media. These devices have the major advantage of utilization of simple and very low-cost technology and therefore the potential to be installed all over the network providing critical cybersecurity operations such authentication, real time cryptographic key generation and generation of trues random sequences. To comply with the requirements of the aforementioned operations, critical issues must be resolved. We propose and implement algorithms for the generation of an almost unlimited number of uncorrelated optical challenges. We show experimentally that the uncorrelated challenges result in optical speckle which, after the proper numerical processing, produce true random sequences. Moreover, we determine the optimal illumination conditions to achieve the best possible performance in terms of robustness and unpredictability. Last but not least, we studied the resilience of the PUF against machine learning attacks. We conclude experimentally that under certain illuminating conditions and using the aforementioned uncorrelated challenges, the network cannot predict the responses even after being trained with a very large number of challenge responses (24,000 pairs).
Author Akriotou, Marialena
Veinidis, Christos
Syvridis, Dimitris
Bartsokas, Theodoros
Author_xml – sequence: 1
  givenname: Marialena
  surname: Akriotou
  fullname: Akriotou, Marialena
– sequence: 2
  givenname: Theodoros
  surname: Bartsokas
  fullname: Bartsokas, Theodoros
– sequence: 3
  givenname: Christos
  surname: Veinidis
  fullname: Veinidis, Christos
– sequence: 4
  givenname: Dimitris
  surname: Syvridis
  fullname: Syvridis, Dimitris
BookMark eNotkE9PAyEQxYnRxFr7BTyReF5lgd2Fo2n806RJL3reDCy0W7ewAo1pP720dS7zZvLyy7y5Q9fOO4PQQ0meSsLEc-RlJUVBaFVQJjgpjldoQgk_jZTeolmMW5KropKXcoLCakz9DgY8mmB92IHTBnuLY78bB4MH_1toHxP22aZPts0hnsXe6cE7UNlks069dxEHE_uhNy7h5PEO9KZ3mWEguN6tMaQE-jveoxsLQzSz_z5FX2-vn_OPYrl6X8xflkVXMnEslCSyA6F1Q41suFVWqUpUAkArKkkN2ioBtGO6qcuOUt5osJ2o6loQ2VjFpmhx4XYetu0YcsxwaD307Xnhw7qFkFMNprXWMinrRnBpuYFaaMU5oUxCaU1leGY9Xlhj8D97E1O79fvg8vktow0V-feUsj_GMHoB
ContentType Journal Article
Copyright The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1038/s41598-025-23840-z
DatabaseName ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (ProQuest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 15
ExternalDocumentID oai_doaj_org_article_fff39967849f4ea68cb440239a1fe5e4
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
K9.
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
PSQYO
Q9U
RNT
RNTTT
RPM
SNYQT
UKHRP
ID FETCH-LOGICAL-d138z-b909da8cc72e974fbfbb5858aacb2906acfb8a2d3c761d2247cafd85668097fb3
IEDL.DBID DOA
IngestDate Mon Nov 24 19:20:39 EST 2025
Wed Nov 19 04:00:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d138z-b909da8cc72e974fbfbb5858aacb2906acfb8a2d3c761d2247cafd85668097fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/fff39967849f4ea68cb440239a1fe5e4
PQID 3272810322
PQPubID 2041939
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_fff39967849f4ea68cb440239a1fe5e4
proquest_journals_3272810322
PublicationCentury 2000
PublicationDate 2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationYear 2025
Publisher Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group
– name: Nature Portfolio
SSID ssj0000529419
Score 2.4628606
Snippet In this paper we reconsider Physical Unclonable Functions based on the traditional approach of optical scattering to randomly disordered optical media. These...
Abstract In this paper we reconsider Physical Unclonable Functions based on the traditional approach of optical scattering to randomly disordered optical...
SourceID doaj
proquest
SourceType Open Website
Aggregation Database
StartPage 40079
SubjectTerms Algorithms
Lasers
Learning algorithms
Machine learning
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELWWLkh7AZYPUbYgH7haTRy3sU8I0FZ7WJUeAPUW-RNVauvQBFb01zPjutsDEheuSWRZ8XieZzzvDSHvXC1UKLRm2MiaidIJprkvmQSHqQxghEztfL7d1vO5XC7VIifculxWefSJyVG7aDFHPq54zSWqv_H37Q-GXaPwdjW30HhAzlEloUqle4v7HAveYolSZa5MUclxB3iFnDI-YTAPUbB91ur_yxUnfJk9-d-ZPSWP88mSfjiYwiU589tn5NGh1-Tv52T3GZzDBj5oT1QBGgPtVqgPTNfxjtnY9TS2KbtN27yAFIBvHRPDiiIIJjulEKSv1kilpH2km1SQCWPkNAvVfY_U_Rfk6-z6y6cblhsuMFdWcs-MKpTT0tqae4gzggnGQDghtbYGZeG1DUZq7ipbT0sH4F9bHZyEE6EsVB1M9ZIMtnHrXxHKp9ZZB7GVn1ihg1KCF8YpLac-6Il2Q_IRf3vTHjQ1GlS5Tg_i7nuTN00TQoDzE8Ap2JPweiqtEQLZuLoMfuLFkIyOK9Lkrdc1p-V4_e_XV-SCoyEkYuGIDPrdT_-GPLS_-lW3e5ss6Q_wvNY8
  priority: 102
  providerName: ProQuest
Title Optimal performance of simple low-cost optical physical unclonable functions resilient to machine learning attacks
URI https://www.proquest.com/docview/3272810322
https://doaj.org/article/fff39967849f4ea68cb440239a1fe5e4
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  databaseCode: DOA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  eissn: 2045-2322
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0000529419
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  databaseCode: M~E
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  eissn: 2045-2322
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: false
  ssIdentifier: ssj0000529419
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  databaseCode: M7P
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  eissn: 2045-2322
  dateEnd: 99991231
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  omitProxy: false
  ssIdentifier: ssj0000529419
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  databaseCode: 7X7
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  eissn: 2045-2322
  dateEnd: 99991231
  titleUrlDefault: https://search.proquest.com/healthcomplete
  omitProxy: false
  ssIdentifier: ssj0000529419
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  databaseCode: BENPR
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  eissn: 2045-2322
  dateEnd: 99991231
  titleUrlDefault: https://www.proquest.com/central
  omitProxy: false
  ssIdentifier: ssj0000529419
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  databaseCode: PIMPY
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  eissn: 2045-2322
  dateEnd: 99991231
  titleUrlDefault: http://search.proquest.com/publiccontent
  omitProxy: false
  ssIdentifier: ssj0000529419
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  databaseCode: M2P
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  eissn: 2045-2322
  dateEnd: 99991231
  titleUrlDefault: https://search.proquest.com/sciencejournals
  omitProxy: false
  ssIdentifier: ssj0000529419
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4-wYv4xOeSg9dgm2Y3ydGVFQVdi6isp5InLKzbZVsV_fVO0oqCBy9eciglCTNJvkyY7xuETixn0idKkVDImrDUMqKoS4mAA1NqwAgRy_k8XvPhUIxGMv9R6ivkhDXywI3hTr33gKFwpEKfzKmeMJqxwMhUqXddF5VA4dbzI5hqVL2pZKlsWTJJJk4rQKrAJqNdAjNgCfloVfp_HcIRWS420Hp7JcRnzVQ20YKbbqHVpkjk-zaa38KufoYfZt85_rj0uBoHYV88Kd-IKasal7P4LI1nreUxINakjNQoHNArLjAM0fV4EjiQuC7xc8ykhD7a9xGs6jpw7nfQw8Xg_vyStJUSiE0z8UG0TKRVwhhOHQQIXnutIQ4QShkd9NyV8VooajPDe6kF1OZGeSvgKicSyb3OdtHStJy6PYRpz1hjIShyXcOUl5LRRFupRM951VV2H_WD1YpZI4ZRBHnq-AGcVrROK_5y2j46-rJ50e6ZqsgopyLo-9GD_xjjEK3R4O3IGzxCS_X8xR2jFfNaj6t5By3yEe-g5f5gmN914uKB9obmoeXQLudXN_nTJ5ahzq0
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qUxDd8CyiUMALWFpNHM_EXiDEq-qo02EWBZVV8BONNJ2kSaBqP4pv5NrjoQskdl2wTSJLjo_PfdjnXoCXtuTSZ0rR0Mia8txyqpjLqUDClBpthIjtfL5MyulUnJzI2Qb8WmthwrXKNSdGora1CTnyvYKVTITqb-xNc0ZD16hwurpuobGCxaG7OMeQrXs9_oDr-4qx_Y_H7w9o6ipAbV6IS6plJq0SxpTMoTPttdcafWahlNGh9rkyXgvFbGEwwrdo4UqjvBXo9ohMll4XOO4N2OQIdjGAzdn4aPb1T1YnnJvxXCZ1TlaIvQ4tZFCxsSHFmfOMXqbuAH-Rf7Ro-3f_t39xD-4k35m8XYH9Pmy45QO4teqmefEQ2k9If6f4QXMlhiC1J908VEAmi_qcmrrrSd3E_D1pEkQJmvZFHTVkJJj5uBNJ67r5IohFSV-T03jlFMdIiSSi-j4UJ9iGz9cy4UcwWNZL9xgIGxlrLEaPbmi48lJylmkrlRg5r4bK7sC7sMxVs6oaUoU63vFB3X6vEi1U3nv0ENFhwB3DnRoJozkPemOVezd0fAd21wioErl01dXyP_n36xdw--D4aFJNxtPDp7DFAgijjHIXBn37wz2Dm-ZnP-_a5wnHBL5dN1x-A14CN4E
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3qiFAj7A0drE8W7sA0JAWVG1WvYAqLfgJ1ppu06TQNX-NH4dY6-XHpC49cA1iSzF_jwzHs83H8BLW3PpC6VoFLKmvLScKuZKKtBgSo0-QiQ5n69H9Wwmjo_lfAt-bbgwsaxyYxOTobbBxBz5qGI1E7H7Gxv5XBYx35--aU9pVJCKN60bOY01RA7d-Rke3_rXB_u41q8Ym374_P4jzQoD1JaVuKBaFtIqYUzNHAbWXnutMX4WShkd-6Ar47VQzFYGT_sWvV1tlLcCQyBRyNrrCse9Btfr2LQ8lQ3O_-R34g0aL2Xm6RSVGPXoKyOfjY0pzgEv6EXWCfjLDSTfNr37P8_KPbiTI2rydr0F7sOWWz2Am2uNzfOH0H1Co3iCH7SXFAkSPOkXsS8yWYYzakI_kNCmrD5pM3AJOvxlSMwyEp1_2p-kc_1iGSmkZAjkJBWi4hg5vUTUMMSWBY_gy5X88GPYXoWV2wHCJsYai2dKNzZceSk5K7SVSkycV2Nld-FdXPKmXfcSaWJ37_QgdN-bbCwa7z3GjRhG4D7iTk2E0ZxHFrIqvRs7vgt7GzQ02eT0zSUUnvz79Qu4hRhpjg5mh0_hNot4TNzKPdgeuh_uGdwwP4dF3z1PgCbw7aqx8hs47z7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+performance+of+simple+low-cost+optical+physical+unclonable+functions+resilient+to+machine+learning+attacks&rft.jtitle=Scientific+reports&rft.au=Marialena+Akriotou&rft.au=Theodoros+Bartsokas&rft.au=Christos+Veinidis&rft.au=Dimitris+Syvridis&rft.date=2025-11-01&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1038%2Fs41598-025-23840-z&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fff39967849f4ea68cb440239a1fe5e4