Network Anomaly Detection Integrating Dynamic Graph Embedding and Transformer Autoencoder

Network anomaly detection aims to promptly identify and respond to malicious activities and potential threats within networks. Most existing graph-embedding-based methods are designed for static graphs and neglect fine-grained temporal information, thus failing to capture the continuity of dynamic n...

Full description

Saved in:
Bibliographic Details
Published in:Ji suan ji gong cheng Vol. 51; no. 4; pp. 47 - 56
Main Author: ZHANG Anqin, DING Zhifeng
Format: Journal Article
Language:Chinese
English
Published: Editorial Office of Computer Engineering 15.04.2025
Subjects:
ISSN:1000-3428
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Network anomaly detection aims to promptly identify and respond to malicious activities and potential threats within networks. Most existing graph-embedding-based methods are designed for static graphs and neglect fine-grained temporal information, thus failing to capture the continuity of dynamic network behaviors and diminishing the effectiveness of network anomaly detection. To enhance the efficiency and accuracy of dynamic network anomaly detection, this study proposes a novel method integrating dynamic graph embedding and Transformer autoencoders. This method leverages temporal-walk-based graph embedding to capture the topological structure and detailed temporal information of the network. It incorporates a Transformer autoencoder with contrastive loss to optimize node embeddings and effectively capture long-term dependencies and global information. This integration enhances the model's ability to perceive dynamic networks, facilitating better detection of time-evolving events and the identification of malicious behaviors. The effectiveness of this method is validated through extensive experiments conducted on two publicly available datasets in network security. Its superior performance on the LANL-2015 dataset is indicated with a True Positive Rate (TPR) of 94.3%, False Positive Rate (FPR) of 5.7%, and an Area Under the Curve (AUC) of 98.3%. Further, on the OpTC dataset, the method achieves a TPR of 99.9%, a FPR of 0.01%, and an AUC of 99.9%. These results demonstrate that the proposed method effectively learns the topology and temporal dependencies of dynamic networks, thereby accurately identifying network anomalies.
AbstractList Network anomaly detection aims to promptly identify and respond to malicious activities and potential threats within networks. Most existing graph-embedding-based methods are designed for static graphs and neglect fine-grained temporal information, thus failing to capture the continuity of dynamic network behaviors and diminishing the effectiveness of network anomaly detection. To enhance the efficiency and accuracy of dynamic network anomaly detection, this study proposes a novel method integrating dynamic graph embedding and Transformer autoencoders. This method leverages temporal-walk-based graph embedding to capture the topological structure and detailed temporal information of the network. It incorporates a Transformer autoencoder with contrastive loss to optimize node embeddings and effectively capture long-term dependencies and global information. This integration enhances the model's ability to perceive dynamic networks, facilitating better detection of time-evolving events and the identification of malicious behaviors. The effectiveness of this method is validated through extensive experiments conducted on two publicly available datasets in network security. Its superior performance on the LANL-2015 dataset is indicated with a True Positive Rate (TPR) of 94.3%, False Positive Rate (FPR) of 5.7%, and an Area Under the Curve (AUC) of 98.3%. Further, on the OpTC dataset, the method achieves a TPR of 99.9%, a FPR of 0.01%, and an AUC of 99.9%. These results demonstrate that the proposed method effectively learns the topology and temporal dependencies of dynamic networks, thereby accurately identifying network anomalies.
Author ZHANG Anqin, DING Zhifeng
Author_xml – sequence: 1
  fullname: ZHANG Anqin, DING Zhifeng
  organization: 1. School of Computer Science and Technology, Shanghai University of Electric Power, Shanghai 201306, China;2. Institute of Local Government Development, Shantou University, Shantou 515063, Guangdong, China
BookMark eNo90M1OAjEUBeAuMBHQd6gPwNhpO21nSQCRhOgGF64md9pbHGRa0qkxvL34E1cn-ZJzFmdCRiEGJOSuZEVZK23uD0U3DKEoGWMzIbkpGNOMi3JExv92TSbDcGBMcs7YmLw-Yf6M6Z3OQ-zheKZLzGhzFwPdhIz7BLkLe7o8B-g7S9cJTm901bfo3LdDcHSXIAw-ph4TnX_kiMFGh-mGXHk4Dnj7l1Py8rDaLR5n2-f1ZjHfzlwpTJ5Zo1uE0hknvTEOpdNGKK6R-9ryiimjvdVe6rZWUEvumNLCWOW9tQJVJaZk87vrIhyaU-p6SOcmQtf8QEz7BlLu7BGbSx-Ur4SA2kprfGt8BUaq0l5eQqnFF3JxZKc
ContentType Journal Article
DBID DOA
DOI 10.19678/j.issn.1000-3428.0070231
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 56
ExternalDocumentID oai_doaj_org_article_a94a6f533a9c4c8fb8f5a8461c023e47
GroupedDBID -0Y
5XA
5XJ
92H
92I
ABJNI
ACGFS
ADMLS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CUBFJ
CW9
GROUPED_DOAJ
TCJ
TGT
U1G
U5S
ID FETCH-LOGICAL-d138t-c87bea1d8d4f88de4d783627e2f9c250687fc7f47b96a942d06738c6ffcc3e653
IEDL.DBID DOA
ISSN 1000-3428
IngestDate Mon Nov 03 22:01:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language Chinese
English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d138t-c87bea1d8d4f88de4d783627e2f9c250687fc7f47b96a942d06738c6ffcc3e653
OpenAccessLink https://doaj.org/article/a94a6f533a9c4c8fb8f5a8461c023e47
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_a94a6f533a9c4c8fb8f5a8461c023e47
PublicationCentury 2000
PublicationDate 2025-04-15
PublicationDateYYYYMMDD 2025-04-15
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-15
  day: 15
PublicationDecade 2020
PublicationTitle Ji suan ji gong cheng
PublicationYear 2025
Publisher Editorial Office of Computer Engineering
Publisher_xml – name: Editorial Office of Computer Engineering
SSID ssj0042200
Score 2.2887144
Snippet Network anomaly detection aims to promptly identify and respond to malicious activities and potential threats within networks. Most existing...
SourceID doaj
SourceType Open Website
StartPage 47
SubjectTerms dynamic graph embedding|transformer autoencoder|network anomaly detection|malicious behavior|long and short-term time-dependence
Title Network Anomaly Detection Integrating Dynamic Graph Embedding and Transformer Autoencoder
URI https://doaj.org/article/a94a6f533a9c4c8fb8f5a8461c023e47
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1000-3428
  databaseCode: DOA
  dateStart: 20160101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0042200
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMeDDBE9iD_xNxG81rVpmqTH6TYVZHiYMk8lfUlAcZ3UTvC_Nz86mScvXtsSynvk_YD3Pl-ELmxSiSFRWWQAIKIllJFIJYtSkVGl4hy4hz0_3fPRSEwm-cOS1JebCQt44GC4rsypZMYWJTIHCsKUwmTSJs0EbLbR1O-RxzxfNFMhBlNC4sAhiG2UsRX2Gjr3m3k2NHdf_fW6_Hnn6NmOgvaL2u_Ty3ALbbZ1Ie6F_9lGK7raQRtLtMBd9DwKI9vYtuxT-faF-7rxg1QVvmuhD_Y73A8a8_jGoajxYFpq5fITlpXC40WZqmvcmzczR7FUut5Dj8PB-Po2apURIpWkoolA8FLLRAlFjRBKU-WWMQjXxORgixomuAFuKC9zZg1IlJOjEcCM9UiqWZbuo041q_QBwgR0bA9zMpK2M3Ti4xmJmUqVA9uTDA7RlbNK8R7gF4XDUfsH1klF66TiLycd_cchx2idOPFdB1rMTlCnqef6FK3CZ_PyUZ95_38DTDCz6g
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Network+Anomaly+Detection+Integrating+Dynamic+Graph+Embedding+and+Transformer+Autoencoder&rft.jtitle=Ji+suan+ji+gong+cheng&rft.au=ZHANG+Anqin%2C+DING+Zhifeng&rft.date=2025-04-15&rft.pub=Editorial+Office+of+Computer+Engineering&rft.issn=1000-3428&rft.volume=51&rft.issue=4&rft.spage=47&rft.epage=56&rft_id=info:doi/10.19678%2Fj.issn.1000-3428.0070231&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a94a6f533a9c4c8fb8f5a8461c023e47
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1000-3428&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1000-3428&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1000-3428&client=summon