Hybrid Machine Learning Models for Optimized Potato Price Prediction

Accurate prediction of agricultural commodity prices, such as potatoes, is crucial for enhancing market efficiency, supporting supply chain decisions, and ensuring economic stability in the agricultural sector. This study proposes an enhanced machine learning framework for potato price prediction us...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of Applied Science and Engineering Ročník 29; číslo 5; s. 1123 - 1138
Hlavný autor: Liping Liu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Tamkang University Press 2026
Predmet:
ISSN:2708-9967, 2708-9975
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Accurate prediction of agricultural commodity prices, such as potatoes, is crucial for enhancing market efficiency, supporting supply chain decisions, and ensuring economic stability in the agricultural sector. This study proposes an enhanced machine learning framework for potato price prediction using Light Gradient Boosting Regression (LGBR), optimized through two metaheuristic algorithms: the Stochastic Paint Optimizer (SPO) and the Population-based Vortex Search Algorithm (PVSA). The hybrid models LGSP (LGBR+SPO) and LGPB (LGBR+PVSA) were developed to reduce prediction error and improve generalization. Experimental results demonstrate that the optimized models outperform the baseline LGBR model. Specifically, LGPB achieved the lowest training mean squared error (MSE) of 3.33E + 03, though it increased to 6.30E + 03 in validation, indicating a potential overfitting issue. LGSP achieved moderate performance with a training MSE of 5.35E+03 and validation MSE of 7.77E+03. In contrast, the baseline LGBR model had the highest MSE values in both training (1.13E+04) and validation (1.34E+04), reflecting weaker predictive accuracy. Uncertainty measures (U95) followed a similar trend. The findings confirm that metaheuristic optimization can significantly improve regression performance in price forecasting tasks. However, challenges in model generalization highlight the need for further tuning and diverse datasets.
AbstractList Accurate prediction of agricultural commodity prices, such as potatoes, is crucial for enhancing market efficiency, supporting supply chain decisions, and ensuring economic stability in the agricultural sector. This study proposes an enhanced machine learning framework for potato price prediction using Light Gradient Boosting Regression (LGBR), optimized through two metaheuristic algorithms: the Stochastic Paint Optimizer (SPO) and the Population-based Vortex Search Algorithm (PVSA). The hybrid models LGSP (LGBR+SPO) and LGPB (LGBR+PVSA) were developed to reduce prediction error and improve generalization. Experimental results demonstrate that the optimized models outperform the baseline LGBR model. Specifically, LGPB achieved the lowest training mean squared error (MSE) of 3.33E + 03, though it increased to 6.30E + 03 in validation, indicating a potential overfitting issue. LGSP achieved moderate performance with a training MSE of 5.35E+03 and validation MSE of 7.77E+03. In contrast, the baseline LGBR model had the highest MSE values in both training (1.13E+04) and validation (1.34E+04), reflecting weaker predictive accuracy. Uncertainty measures (U95) followed a similar trend. The findings confirm that metaheuristic optimization can significantly improve regression performance in price forecasting tasks. However, challenges in model generalization highlight the need for further tuning and diverse datasets.
Author Liping Liu
Author_xml – sequence: 1
  fullname: Liping Liu
  organization: School of Management, Wuhan College, Wuhan 430212, Hubei, China
BookMark eNo9jEtPAjEUhRujiYj8BdOlLgZv2-lrafABCQQW7Cd93MESmJLObPDXS9S4OefLyZdzR6673CEhDwymihl43rsepxy4Atlw-yifpgAMrsiIazCVtVpe_7PSt2TS98mDBC2EsHxEXudnX1KkKxc-U4d0ia50qdvRVY546GmbC12fhnRMXxjpJg9uyHRTUsBLYkxhSLm7JzetO_Q4-esx2b6_bWfzarn-WMxellVkwgxVEIbpoHzLZQAWRVC6lsgkeoyolDW1MIprjaH2RvjALfM--IsDzksQY7L4vY3Z7ZtTSUdXzk12qfkZctk1rgwpHLAJOmJrwSNIUWvRWi-MB1TGeebagOIbEIFepw
ContentType Journal Article
DBID DOA
DOI 10.6180/jase.202605_29(5).0010
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2708-9975
EndPage 1138
ExternalDocumentID oai_doaj_org_article_c7def90be053473f9b38b0e68ab1afce
GroupedDBID AAFWJ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
ID FETCH-LOGICAL-d138t-c3817c6bf25c01d3c6745e15ebede66984386277ec4b83bc291bbcb45e0ab503
IEDL.DBID DOA
ISSN 2708-9967
IngestDate Mon Nov 03 21:50:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d138t-c3817c6bf25c01d3c6745e15ebede66984386277ec4b83bc291bbcb45e0ab503
OpenAccessLink https://doaj.org/article/c7def90be053473f9b38b0e68ab1afce
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_c7def90be053473f9b38b0e68ab1afce
PublicationCentury 2000
PublicationDate 2026-00-00
PublicationDateYYYYMMDD 2026-01-01
PublicationDate_xml – year: 2026
  text: 2026-00-00
PublicationDecade 2020
PublicationTitle Journal of Applied Science and Engineering
PublicationYear 2026
Publisher Tamkang University Press
Publisher_xml – name: Tamkang University Press
SSID ssib050733392
ssib053285227
ssj0002909514
Score 2.3135219
Snippet Accurate prediction of agricultural commodity prices, such as potatoes, is crucial for enhancing market efficiency, supporting supply chain decisions, and...
SourceID doaj
SourceType Open Website
StartPage 1123
SubjectTerms decision-making process
light gradient boosting regression
machine learning
potato prices
stochastic paint optimizer
Title Hybrid Machine Learning Models for Optimized Potato Price Prediction
URI https://doaj.org/article/c7def90be053473f9b38b0e68ab1afce
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2708-9975
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002909514
  issn: 2708-9967
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2708-9975
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib050733392
  issn: 2708-9967
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwGLUQYoABcYpbHhhgiPARXyNHqy4tHTp0i-IjqAha1BYkGPjtfF9SQZlYWDxEluXkOfb7_NnvEXLuVMWC8HkWXIQAhXv4pYS2WS4T4B9Kl6SvzSZMr2eHQ9dfsvrCM2GNPHDz4a6CialyzKOFQW5k5by0niVtS8_LKiScfZlxS8EUjCSFVoTyJ1-opLBANMz37otwSC0w5SwMg-45bZrrwxqvPj_CAgKhI1L9QrgLdYn5CvZL1b9eftpbZHPBG-l1099tspLGO2RjSU1wl9x13vH6Fe3W5yMTXUinPlD0O3uaUaCn9B5miOfRR4q0PwGaOaG17TuUmK9BjPbIoN0a3HayhUlCFrm08yygxF7QvhIqMB5l0CZXiSsAJyatnc0lBC3GpJB7K30QjnsfPNRhpVdM7pPV8WScDgiVEeqq0tWKO5g00ZV1MVhgiIKHnB-SG3z_4qWRwShQmLp-AHAVC7iKv-A6-o9Gjsk6otPshJyQ1fn0NZ2StfA2H82mZ_VIgLL72foCfr-1Cw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Machine+Learning+Models+for+Optimized+Potato+Price+Prediction&rft.jtitle=Journal+of+Applied+Science+and+Engineering&rft.au=Liping+Liu&rft.date=2026&rft.pub=Tamkang+University+Press&rft.issn=2708-9967&rft.eissn=2708-9975&rft.volume=29&rft.issue=5&rft.spage=1123&rft.epage=1138&rft_id=info:doi/10.6180%2Fjase.202605_29%285%29.0010&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c7def90be053473f9b38b0e68ab1afce
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2708-9967&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2708-9967&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2708-9967&client=summon