Hybrid Machine Learning Models for Optimized Potato Price Prediction
Accurate prediction of agricultural commodity prices, such as potatoes, is crucial for enhancing market efficiency, supporting supply chain decisions, and ensuring economic stability in the agricultural sector. This study proposes an enhanced machine learning framework for potato price prediction us...
Uložené v:
| Vydané v: | Journal of Applied Science and Engineering Ročník 29; číslo 5; s. 1123 - 1138 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Tamkang University Press
2026
|
| Predmet: | |
| ISSN: | 2708-9967, 2708-9975 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Accurate prediction of agricultural commodity prices, such as potatoes, is crucial for enhancing market efficiency, supporting supply chain decisions, and ensuring economic stability in the agricultural sector. This study proposes an enhanced machine learning framework for potato price prediction using Light Gradient Boosting Regression (LGBR), optimized through two metaheuristic algorithms: the Stochastic Paint Optimizer (SPO) and the Population-based Vortex Search Algorithm (PVSA). The hybrid models LGSP (LGBR+SPO) and LGPB (LGBR+PVSA) were developed to reduce prediction error and improve generalization. Experimental results demonstrate that the optimized models outperform the baseline LGBR model. Specifically, LGPB achieved the lowest training mean squared error (MSE) of 3.33E + 03, though it increased to 6.30E + 03 in validation, indicating a potential overfitting issue. LGSP achieved moderate performance with a training MSE of 5.35E+03 and validation MSE of 7.77E+03. In contrast, the baseline LGBR model had the highest MSE values in both training (1.13E+04) and validation (1.34E+04), reflecting weaker predictive accuracy. Uncertainty measures (U95) followed a similar trend. The findings confirm that metaheuristic optimization can significantly improve regression performance in price forecasting tasks. However, challenges in model generalization highlight the need for further tuning and diverse datasets. |
|---|---|
| AbstractList | Accurate prediction of agricultural commodity prices, such as potatoes, is crucial for enhancing market efficiency, supporting supply chain decisions, and ensuring economic stability in the agricultural sector. This study proposes an enhanced machine learning framework for potato price prediction using Light Gradient Boosting Regression (LGBR), optimized through two metaheuristic algorithms: the Stochastic Paint Optimizer (SPO) and the Population-based Vortex Search Algorithm (PVSA). The hybrid models LGSP (LGBR+SPO) and LGPB (LGBR+PVSA) were developed to reduce prediction error and improve generalization. Experimental results demonstrate that the optimized models outperform the baseline LGBR model. Specifically, LGPB achieved the lowest training mean squared error (MSE) of 3.33E + 03, though it increased to 6.30E + 03 in validation, indicating a potential overfitting issue. LGSP achieved moderate performance with a training MSE of 5.35E+03 and validation MSE of 7.77E+03. In contrast, the baseline LGBR model had the highest MSE values in both training (1.13E+04) and validation (1.34E+04), reflecting weaker predictive accuracy. Uncertainty measures (U95) followed a similar trend. The findings confirm that metaheuristic optimization can significantly improve regression performance in price forecasting tasks. However, challenges in model generalization highlight the need for further tuning and diverse datasets. |
| Author | Liping Liu |
| Author_xml | – sequence: 1 fullname: Liping Liu organization: School of Management, Wuhan College, Wuhan 430212, Hubei, China |
| BookMark | eNo9jEtPAjEUhRujiYj8BdOlLgZv2-lrafABCQQW7Cd93MESmJLObPDXS9S4OefLyZdzR6673CEhDwymihl43rsepxy4Atlw-yifpgAMrsiIazCVtVpe_7PSt2TS98mDBC2EsHxEXudnX1KkKxc-U4d0ia50qdvRVY546GmbC12fhnRMXxjpJg9uyHRTUsBLYkxhSLm7JzetO_Q4-esx2b6_bWfzarn-WMxellVkwgxVEIbpoHzLZQAWRVC6lsgkeoyolDW1MIprjaH2RvjALfM--IsDzksQY7L4vY3Z7ZtTSUdXzk12qfkZctk1rgwpHLAJOmJrwSNIUWvRWi-MB1TGeebagOIbEIFepw |
| ContentType | Journal Article |
| DBID | DOA |
| DOI | 10.6180/jase.202605_29(5).0010 |
| DatabaseName | DOAJ Directory of Open Access Journals |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2708-9975 |
| EndPage | 1138 |
| ExternalDocumentID | oai_doaj_org_article_c7def90be053473f9b38b0e68ab1afce |
| GroupedDBID | AAFWJ AFPKN ALMA_UNASSIGNED_HOLDINGS GROUPED_DOAJ |
| ID | FETCH-LOGICAL-d138t-c3817c6bf25c01d3c6745e15ebede66984386277ec4b83bc291bbcb45e0ab503 |
| IEDL.DBID | DOA |
| ISSN | 2708-9967 |
| IngestDate | Mon Nov 03 21:50:50 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-d138t-c3817c6bf25c01d3c6745e15ebede66984386277ec4b83bc291bbcb45e0ab503 |
| OpenAccessLink | https://doaj.org/article/c7def90be053473f9b38b0e68ab1afce |
| PageCount | 16 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c7def90be053473f9b38b0e68ab1afce |
| PublicationCentury | 2000 |
| PublicationDate | 2026-00-00 |
| PublicationDateYYYYMMDD | 2026-01-01 |
| PublicationDate_xml | – year: 2026 text: 2026-00-00 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of Applied Science and Engineering |
| PublicationYear | 2026 |
| Publisher | Tamkang University Press |
| Publisher_xml | – name: Tamkang University Press |
| SSID | ssib050733392 ssib053285227 ssj0002909514 |
| Score | 2.3135219 |
| Snippet | Accurate prediction of agricultural commodity prices, such as potatoes, is crucial for enhancing market efficiency, supporting supply chain decisions, and... |
| SourceID | doaj |
| SourceType | Open Website |
| StartPage | 1123 |
| SubjectTerms | decision-making process light gradient boosting regression machine learning potato prices stochastic paint optimizer |
| Title | Hybrid Machine Learning Models for Optimized Potato Price Prediction |
| URI | https://doaj.org/article/c7def90be053473f9b38b0e68ab1afce |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2708-9975 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002909514 issn: 2708-9967 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2708-9975 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib050733392 issn: 2708-9967 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwGLUQYoABcYpbHhhgiPARXyNHqy4tHTp0i-IjqAha1BYkGPjtfF9SQZlYWDxEluXkOfb7_NnvEXLuVMWC8HkWXIQAhXv4pYS2WS4T4B9Kl6SvzSZMr2eHQ9dfsvrCM2GNPHDz4a6CialyzKOFQW5k5by0niVtS8_LKiScfZlxS8EUjCSFVoTyJ1-opLBANMz37otwSC0w5SwMg-45bZrrwxqvPj_CAgKhI1L9QrgLdYn5CvZL1b9eftpbZHPBG-l1099tspLGO2RjSU1wl9x13vH6Fe3W5yMTXUinPlD0O3uaUaCn9B5miOfRR4q0PwGaOaG17TuUmK9BjPbIoN0a3HayhUlCFrm08yygxF7QvhIqMB5l0CZXiSsAJyatnc0lBC3GpJB7K30QjnsfPNRhpVdM7pPV8WScDgiVEeqq0tWKO5g00ZV1MVhgiIKHnB-SG3z_4qWRwShQmLp-AHAVC7iKv-A6-o9Gjsk6otPshJyQ1fn0NZ2StfA2H82mZ_VIgLL72foCfr-1Cw |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Machine+Learning+Models+for+Optimized+Potato+Price+Prediction&rft.jtitle=Journal+of+Applied+Science+and+Engineering&rft.au=Liping+Liu&rft.date=2026&rft.pub=Tamkang+University+Press&rft.issn=2708-9967&rft.eissn=2708-9975&rft.volume=29&rft.issue=5&rft.spage=1123&rft.epage=1138&rft_id=info:doi/10.6180%2Fjase.202605_29%285%29.0010&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c7def90be053473f9b38b0e68ab1afce |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2708-9967&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2708-9967&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2708-9967&client=summon |