Experimental investigation of the strength of joining dissimilar aluminum alloys by friction stir welding and optimization of effective parameters with artificial intelligence

In this study, the friction stir welding process has been investigated for joining dissimilar 6061 aluminum alloy to 5083 aluminum alloy. Cutting and cleaning of the surface of the samples have been performed for friction stir welding. By evaluating the feasibility of friction stir welding of dissim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Results in engineering Jg. 26; S. 105616
Hauptverfasser: Hosein Rostami, Saeid Nickabadi, Elyas Rostami, Kave Yazdi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier 01.06.2025
Schlagworte:
ISSN:2590-1230
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this study, the friction stir welding process has been investigated for joining dissimilar 6061 aluminum alloy to 5083 aluminum alloy. Cutting and cleaning of the surface of the samples have been performed for friction stir welding. By evaluating the feasibility of friction stir welding of dissimilar 6061 and 5083 aluminum alloys to each other and welding them, the samples were examined to investigate mechanical properties. Tensile testing was used to investigate mechanical properties. After performing mechanical property tests, optimization of friction stir welding process parameters on tensile strength and weld yield strength was carried out with artificial intelligence. Response surface methodology, genetic algorithms, and particle swarm optimization algorithms have been used to optimize welding parameters. The results of the tensile test showed an improvement in the ultimate strength and yield strength of welded samples at a tool rotational speed of 800 rpm and a tool traverse speed (welding speed) of 100 mm/min with an ultimate tensile strength of 199 MPa. The effect of welding parameters such as tool rotational speed and tool traverse speed has also been investigated through optimization. The optimal process parameters to maximize tensile strength and yield strength were obtained at a rotational speed of 630 rpm and a tool welding speed of 128 mm/min. The maximum yield strength in the weld zone for the combination of the optimal parameters of the process was obtained at 126 MPa, and the maximum tensile strength in the weld zone was obtained at 172 MPa.
AbstractList In this study, the friction stir welding process has been investigated for joining dissimilar 6061 aluminum alloy to 5083 aluminum alloy. Cutting and cleaning of the surface of the samples have been performed for friction stir welding. By evaluating the feasibility of friction stir welding of dissimilar 6061 and 5083 aluminum alloys to each other and welding them, the samples were examined to investigate mechanical properties. Tensile testing was used to investigate mechanical properties. After performing mechanical property tests, optimization of friction stir welding process parameters on tensile strength and weld yield strength was carried out with artificial intelligence. Response surface methodology, genetic algorithms, and particle swarm optimization algorithms have been used to optimize welding parameters. The results of the tensile test showed an improvement in the ultimate strength and yield strength of welded samples at a tool rotational speed of 800 rpm and a tool traverse speed (welding speed) of 100 mm/min with an ultimate tensile strength of 199 MPa. The effect of welding parameters such as tool rotational speed and tool traverse speed has also been investigated through optimization. The optimal process parameters to maximize tensile strength and yield strength were obtained at a rotational speed of 630 rpm and a tool welding speed of 128 mm/min. The maximum yield strength in the weld zone for the combination of the optimal parameters of the process was obtained at 126 MPa, and the maximum tensile strength in the weld zone was obtained at 172 MPa.
Author Saeid Nickabadi
Hosein Rostami
Elyas Rostami
Kave Yazdi
Author_xml – sequence: 1
  fullname: Hosein Rostami
  organization: PhD. Student of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran
– sequence: 2
  fullname: Saeid Nickabadi
  organization: Faculty of Mechanical Engineering, University of Imam Khomeini Marine Sciences, Nowshahr, Iran
– sequence: 3
  fullname: Elyas Rostami
  organization: Faculty of Aerospace Engineering, Buein Zahra Technical and Engineering University, Buein Zahra, Iran; Corresponding author
– sequence: 4
  fullname: Kave Yazdi
  organization: Faculty of Mechanical Engineering, University of Imam Khomeini Marine Sciences, Nowshahr, Iran
BookMark eNo9kE1OHDEQhS0UJAjhBix8gZm47el29xIhIEhI2STrVrVdbmrktke2-RkuxRXjGSJWVfVU76vS-86-hRiQsatGrBvRdD-360QBw7yWQrZVarumO2Hnsh3EqpFKnLHLnLdCCNnXfaXP2cft2w4TLRgKeE7hBXOhGQrFwKPj5Ql5Lqkiy9Nh3kYKFGZuKWdayEPi4J8XCs9LbXzcZz7tuUtkjoTKSvwVvT14IFged6Xa3r_46BzW1RfkO0iwYMGU-SvVY5AKOTJ0_Kqg9zRjMPiDnTrwGS__1wv29-72z82v1ePv-4eb68eVbVRfVp1GBcpoKYbBGdSdGjZNBwOisL3Sqh_AKWlATLY1MGENYyMHkBacNr016oI9fHJthO24qwlB2o8RaDwKMc3j4UPjcRTVZCat237oNqZGuzFOTUJY27egjVH_ALvkh1w
ContentType Journal Article
DBID DOA
DOI 10.1016/j.rineng.2025.105616
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals - Not for CDI Discovery
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2590-1230
ExternalDocumentID oai_doaj_org_article_0dafcb7758964c0284cf3b00dd85a7cc
GroupedDBID 0R~
AAEDW
AALRI
AAXUO
AAYWO
ACVFH
ADBBV
ADCNI
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
SSZ
ID FETCH-LOGICAL-d138t-67e3a3c72099fce7639416a9ee0d837389af32ca0bd5cabe013429a2daf7c8dc3
IEDL.DBID DOA
IngestDate Fri Oct 03 12:44:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d138t-67e3a3c72099fce7639416a9ee0d837389af32ca0bd5cabe013429a2daf7c8dc3
OpenAccessLink https://doaj.org/article/0dafcb7758964c0284cf3b00dd85a7cc
ParticipantIDs doaj_primary_oai_doaj_org_article_0dafcb7758964c0284cf3b00dd85a7cc
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Results in engineering
PublicationYear 2025
Publisher Elsevier
Publisher_xml – name: Elsevier
SSID ssj0002810137
Score 2.2931774
Snippet In this study, the friction stir welding process has been investigated for joining dissimilar 6061 aluminum alloy to 5083 aluminum alloy. Cutting and cleaning...
SourceID doaj
SourceType Open Website
StartPage 105616
SubjectTerms 6061 and 5083 aluminum alloys
Friction stir welding
Genetic optimization algorithm
Particle swarm optimization algorithm
Response surface optimization algorithm
Title Experimental investigation of the strength of joining dissimilar aluminum alloys by friction stir welding and optimization of effective parameters with artificial intelligence
URI https://doaj.org/article/0dafcb7758964c0284cf3b00dd85a7cc
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals - Not for CDI Discovery
  databaseCode: DOA
  dateStart: 20190101
  customDbUrl:
  isFulltext: true
  eissn: 2590-1230
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0002810137
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  databaseCode: M~E
  dateStart: 20190101
  customDbUrl:
  isFulltext: true
  eissn: 2590-1230
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: false
  ssIdentifier: ssj0002810137
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07T8QwDIAjhBhgQDzFWx5YK3J9JR0B3YkBTgwg3ValSXr0pLborge6hb_EX8ROiygTC0uldrAqO3LsxP7M2CWG1MIknHuhyqglx1pPqcj3eOwbHmqjfOMsfS_GYzmZJI-9UV9UE9bigVvFXXGjcp0JDGuTONS4G4Y6D3CtGCMjJbQm78tF0kumZu7IaEAsve9eOVfQRd101RRTQj9y8-YHvzn9bkMZ7bDtLhKE6_YPdtmarfbYVo8PuM8-hz3-PhQ_SIy6gjoHjN2Aej2qafNC77PaTXsAumMvygJzVlDoe4pqWQLdr68WkK2ABgM5CShrDu_W3T6BqgzU6D7Kri-T5LW1HugOgQDhJRXOLIAOboHU1qInoOgxPQ_Y82j4dHvndRMWPDMIZOPFwgYq0IL6Z3Nt0dckGKCpxFpuJDGPEpUHvlY8M5FWmUWd4v6F9lO50NLo4JCtV3VljxgIFeRE4skltdrKMJFxTGw8iTll5MvomN2QrtPXFqKREtbafUBjp52x07-MffIfQk7ZJq2Btt7rjK0386U9Zxv6rSkW8wu3jvD58DH8AtZj1b0
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+investigation+of+the+strength+of+joining+dissimilar+aluminum+alloys+by+friction+stir+welding+and+optimization+of+effective+parameters+with+artificial+intelligence&rft.jtitle=Results+in+engineering&rft.au=Hosein+Rostami&rft.au=Saeid+Nickabadi&rft.au=Elyas+Rostami&rft.au=Kave+Yazdi&rft.date=2025-06-01&rft.pub=Elsevier&rft.eissn=2590-1230&rft.volume=26&rft.spage=105616&rft_id=info:doi/10.1016%2Fj.rineng.2025.105616&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0dafcb7758964c0284cf3b00dd85a7cc