Improved Fall Detection Algorithm Based on YOLOv8: OEF-YOLO

Existing object detection algorithms suffer from low detection accuracy and poor real-time performance when detecting fall events in indoor scenes, owing to changes in angle and light. In response to this challenge, this study proposes an improved fall detection algorithm based on YOLOv8, called OEF...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ji suan ji gong cheng Jg. 51; H. 7; S. 127 - 139
1. Verfasser: SONG Jie, XU Huiying, ZHU Xinzhong, HUANG Xiao, CHEN Chen, WANG Zeyu
Format: Journal Article
Sprache:Chinesisch
Englisch
Veröffentlicht: Editorial Office of Computer Engineering 01.07.2025
Schlagworte:
ISSN:1000-3428
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Existing object detection algorithms suffer from low detection accuracy and poor real-time performance when detecting fall events in indoor scenes, owing to changes in angle and light. In response to this challenge, this study proposes an improved fall detection algorithm based on YOLOv8, called OEF-YOLO. The C2f module in YOLOv8 is improved by using a Omni-dimensional Dynamic Convolution (ODConv) module, optimizing the four dimensions of the kernel space to enhance feature extraction capabilities and effectively reduce computational burden. Simultaneously, to capture finer grained features, the Efficient Multi-scale Attention (EMA) module is introduced into the neck network to further aggregate pixel-level features and improve the network's processing ability in fall scenes. Integrating the Focal Loss idea into the Complete Intersection over Union (CIoU) loss function allows the model to pay more attention to difficult-to-classify samples and optimize overall model performance. Experimental results show that compared to YOLOv8n, OEF-YOLO achieves improvements of 1.5 and 1.4 percentage points in terms of mAP@0.5 and mAP@0.5∶0.95, the parameters and computational complexity are 3.1×106 and 6.5 GFLOPs. Frames Per Second (FPS) increases by 44 on a Graphic Processing Unit (GPU), achieving high-precision detection of fall events while also meeting deployment requirements in low computing scenarios.
AbstractList Existing object detection algorithms suffer from low detection accuracy and poor real-time performance when detecting fall events in indoor scenes, owing to changes in angle and light. In response to this challenge, this study proposes an improved fall detection algorithm based on YOLOv8, called OEF-YOLO. The C2f module in YOLOv8 is improved by using a Omni-dimensional Dynamic Convolution (ODConv) module, optimizing the four dimensions of the kernel space to enhance feature extraction capabilities and effectively reduce computational burden. Simultaneously, to capture finer grained features, the Efficient Multi-scale Attention (EMA) module is introduced into the neck network to further aggregate pixel-level features and improve the network's processing ability in fall scenes. Integrating the Focal Loss idea into the Complete Intersection over Union (CIoU) loss function allows the model to pay more attention to difficult-to-classify samples and optimize overall model performance. Experimental results show that compared to YOLOv8n, OEF-YOLO achieves improvements of 1.5 and 1.4 percentage points in terms of mAP@0.5 and mAP@0.5∶0.95, the parameters and computational complexity are 3.1×106 and 6.5 GFLOPs. Frames Per Second (FPS) increases by 44 on a Graphic Processing Unit (GPU), achieving high-precision detection of fall events while also meeting deployment requirements in low computing scenarios.
Author SONG Jie, XU Huiying, ZHU Xinzhong, HUANG Xiao, CHEN Chen, WANG Zeyu
Author_xml – sequence: 1
  fullname: SONG Jie, XU Huiying, ZHU Xinzhong, HUANG Xiao, CHEN Chen, WANG Zeyu
  organization: 1. College of Computer Science and Technology, Zhejiang Normal University, Jinhua 321004, Zhejiang, China;2. College of Education, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
BookMark eNo9jM1Og0AUhWdRE9vqO-ADgHeGYX50VWtREhI2unBFhplLhQDTAGni24vVuPpOvnNyNmQ1-AEJuaMQUS2kum-jZpqGiAJAGHOmIgChWSJXZP3vrslmmloAzhjAmjxm_Wn0Z3RBaroueMYZ7dz4Idh1Rz8282cfPJlpqRf1UeTFWT0ExSENf_INuapNN-HtH7fkPT287V_DvHjJ9rs8dDRWc8hVXTFmrF3gZCLQabBMmEoogRIQtLCS11JSYURsEqcSJqhd9rRCWYt4S7LfX-dNW57GpjfjV-lNU16EH4-lGefGdlg6bmXNlUKsBEdZKdAAkmoHTEka0_gbEQZW9Q
ContentType Journal Article
DBID DOA
DOI 10.19678/j.issn.1000-3428.0069257
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 139
ExternalDocumentID oai_doaj_org_article_d4c7f488eeb64e7b80900719d0287131
GroupedDBID -0Y
92H
92I
ABJNI
ACGFS
ADMLS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CUBFJ
CW9
GROUPED_DOAJ
TCJ
TGT
U1G
U5S
ID FETCH-LOGICAL-d138t-48fb22accfb2d756ed90c26ab686e70e096c74f7716a63a5d85261cccf1be7f63
IEDL.DBID DOA
ISSN 1000-3428
IngestDate Mon Nov 03 21:49:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language Chinese
English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d138t-48fb22accfb2d756ed90c26ab686e70e096c74f7716a63a5d85261cccf1be7f63
OpenAccessLink https://doaj.org/article/d4c7f488eeb64e7b80900719d0287131
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_d4c7f488eeb64e7b80900719d0287131
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Ji suan ji gong cheng
PublicationYear 2025
Publisher Editorial Office of Computer Engineering
Publisher_xml – name: Editorial Office of Computer Engineering
SSID ssj0042200
Score 2.3027627
Snippet Existing object detection algorithms suffer from low detection accuracy and poor real-time performance when detecting fall events in indoor scenes, owing to...
SourceID doaj
SourceType Open Website
StartPage 127
SubjectTerms object detection|lightweight|falling incidents|attention mechanism|omni-dimensional dynamic convolution(odconv)
Title Improved Fall Detection Algorithm Based on YOLOv8: OEF-YOLO
URI https://doaj.org/article/d4c7f488eeb64e7b80900719d0287131
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1000-3428
  databaseCode: DOA
  dateStart: 20160101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0042200
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELVQhRAcEKvYZSSupq7jeIFTC404VC0HkMopcuwJi0qKSuj3YzsF9caFUyInipJMPG9eNH4PoQvTSSUXpSYlSE44o45oaYDYpJDMQ6IoIbqWDORwqMZjfb9k9RV6whp54ObFtR23svRfGUAhOMhCUR1gUTsaav24gppRqX_IVJODOWO00SGgPsv4CnsNnceVeT41t9_i9Lr8PRZauzQL-LSk2h_hJdtCm4u6EHeb-9lGK1DtoI0ltcBddN38AACHMzOZ4FuoYxtVhbuT56nn-C_vuOcxyWE_9DQajObqCo_6GQn7e-gx6z_c3JGF9wFxnUTVhKuyYMxY6zdOpgKcppYJUwglQFLwzMNKXkpPd4xITOpU6rmQ9ed3CpClSPZRq5pWcICwVs6DkCoTSDSX4CesY6mzJrhzpkylh6gXnjv_aOQt8iA4HQd8GPJFGPK_wnD0Hxc5Russ2OvGbtgT1KpnX3CKVu28fv2cncUIfwNveaUM
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Fall+Detection+Algorithm+Based+on+YOLOv8%3A+OEF-YOLO&rft.jtitle=Ji+suan+ji+gong+cheng&rft.au=SONG+Jie%2C+XU+Huiying%2C+ZHU+Xinzhong%2C+HUANG+Xiao%2C+CHEN+Chen%2C+WANG+Zeyu&rft.date=2025-07-01&rft.pub=Editorial+Office+of+Computer+Engineering&rft.issn=1000-3428&rft.volume=51&rft.issue=7&rft.spage=127&rft.epage=139&rft_id=info:doi/10.19678%2Fj.issn.1000-3428.0069257&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d4c7f488eeb64e7b80900719d0287131
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1000-3428&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1000-3428&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1000-3428&client=summon