Improved Fall Detection Algorithm Based on YOLOv8: OEF-YOLO
Existing object detection algorithms suffer from low detection accuracy and poor real-time performance when detecting fall events in indoor scenes, owing to changes in angle and light. In response to this challenge, this study proposes an improved fall detection algorithm based on YOLOv8, called OEF...
Gespeichert in:
| Veröffentlicht in: | Ji suan ji gong cheng Jg. 51; H. 7; S. 127 - 139 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Chinesisch Englisch |
| Veröffentlicht: |
Editorial Office of Computer Engineering
01.07.2025
|
| Schlagworte: | |
| ISSN: | 1000-3428 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Existing object detection algorithms suffer from low detection accuracy and poor real-time performance when detecting fall events in indoor scenes, owing to changes in angle and light. In response to this challenge, this study proposes an improved fall detection algorithm based on YOLOv8, called OEF-YOLO. The C2f module in YOLOv8 is improved by using a Omni-dimensional Dynamic Convolution (ODConv) module, optimizing the four dimensions of the kernel space to enhance feature extraction capabilities and effectively reduce computational burden. Simultaneously, to capture finer grained features, the Efficient Multi-scale Attention (EMA) module is introduced into the neck network to further aggregate pixel-level features and improve the network's processing ability in fall scenes. Integrating the Focal Loss idea into the Complete Intersection over Union (CIoU) loss function allows the model to pay more attention to difficult-to-classify samples and optimize overall model performance. Experimental results show that compared to YOLOv8n, OEF-YOLO achieves improvements of 1.5 and 1.4 percentage points in terms of mAP@0.5 and mAP@0.5∶0.95, the parameters and computational complexity are 3.1×106 and 6.5 GFLOPs. Frames Per Second (FPS) increases by 44 on a Graphic Processing Unit (GPU), achieving high-precision detection of fall events while also meeting deployment requirements in low computing scenarios. |
|---|---|
| AbstractList | Existing object detection algorithms suffer from low detection accuracy and poor real-time performance when detecting fall events in indoor scenes, owing to changes in angle and light. In response to this challenge, this study proposes an improved fall detection algorithm based on YOLOv8, called OEF-YOLO. The C2f module in YOLOv8 is improved by using a Omni-dimensional Dynamic Convolution (ODConv) module, optimizing the four dimensions of the kernel space to enhance feature extraction capabilities and effectively reduce computational burden. Simultaneously, to capture finer grained features, the Efficient Multi-scale Attention (EMA) module is introduced into the neck network to further aggregate pixel-level features and improve the network's processing ability in fall scenes. Integrating the Focal Loss idea into the Complete Intersection over Union (CIoU) loss function allows the model to pay more attention to difficult-to-classify samples and optimize overall model performance. Experimental results show that compared to YOLOv8n, OEF-YOLO achieves improvements of 1.5 and 1.4 percentage points in terms of mAP@0.5 and mAP@0.5∶0.95, the parameters and computational complexity are 3.1×106 and 6.5 GFLOPs. Frames Per Second (FPS) increases by 44 on a Graphic Processing Unit (GPU), achieving high-precision detection of fall events while also meeting deployment requirements in low computing scenarios. |
| Author | SONG Jie, XU Huiying, ZHU Xinzhong, HUANG Xiao, CHEN Chen, WANG Zeyu |
| Author_xml | – sequence: 1 fullname: SONG Jie, XU Huiying, ZHU Xinzhong, HUANG Xiao, CHEN Chen, WANG Zeyu organization: 1. College of Computer Science and Technology, Zhejiang Normal University, Jinhua 321004, Zhejiang, China;2. College of Education, Zhejiang Normal University, Jinhua 321004, Zhejiang, China |
| BookMark | eNo9jM1Og0AUhWdRE9vqO-ADgHeGYX50VWtREhI2unBFhplLhQDTAGni24vVuPpOvnNyNmQ1-AEJuaMQUS2kum-jZpqGiAJAGHOmIgChWSJXZP3vrslmmloAzhjAmjxm_Wn0Z3RBaroueMYZ7dz4Idh1Rz8282cfPJlpqRf1UeTFWT0ExSENf_INuapNN-HtH7fkPT287V_DvHjJ9rs8dDRWc8hVXTFmrF3gZCLQabBMmEoogRIQtLCS11JSYURsEqcSJqhd9rRCWYt4S7LfX-dNW57GpjfjV-lNU16EH4-lGefGdlg6bmXNlUKsBEdZKdAAkmoHTEka0_gbEQZW9Q |
| ContentType | Journal Article |
| DBID | DOA |
| DOI | 10.19678/j.issn.1000-3428.0069257 |
| DatabaseName | DOAJ Directory of Open Access Journals |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EndPage | 139 |
| ExternalDocumentID | oai_doaj_org_article_d4c7f488eeb64e7b80900719d0287131 |
| GroupedDBID | -0Y 92H 92I ABJNI ACGFS ADMLS ALMA_UNASSIGNED_HOLDINGS CCEZO CUBFJ CW9 GROUPED_DOAJ TCJ TGT U1G U5S |
| ID | FETCH-LOGICAL-d138t-48fb22accfb2d756ed90c26ab686e70e096c74f7716a63a5d85261cccf1be7f63 |
| IEDL.DBID | DOA |
| ISSN | 1000-3428 |
| IngestDate | Mon Nov 03 21:49:48 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | Chinese English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-d138t-48fb22accfb2d756ed90c26ab686e70e096c74f7716a63a5d85261cccf1be7f63 |
| OpenAccessLink | https://doaj.org/article/d4c7f488eeb64e7b80900719d0287131 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d4c7f488eeb64e7b80900719d0287131 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-01 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Ji suan ji gong cheng |
| PublicationYear | 2025 |
| Publisher | Editorial Office of Computer Engineering |
| Publisher_xml | – name: Editorial Office of Computer Engineering |
| SSID | ssj0042200 |
| Score | 2.3027627 |
| Snippet | Existing object detection algorithms suffer from low detection accuracy and poor real-time performance when detecting fall events in indoor scenes, owing to... |
| SourceID | doaj |
| SourceType | Open Website |
| StartPage | 127 |
| SubjectTerms | object detection|lightweight|falling incidents|attention mechanism|omni-dimensional dynamic convolution(odconv) |
| Title | Improved Fall Detection Algorithm Based on YOLOv8: OEF-YOLO |
| URI | https://doaj.org/article/d4c7f488eeb64e7b80900719d0287131 |
| Volume | 51 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1000-3428 databaseCode: DOA dateStart: 20160101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: false ssIdentifier: ssj0042200 providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELVQhRAcEKvYZSSupq7jeIFTC404VC0HkMopcuwJi0qKSuj3YzsF9caFUyInipJMPG9eNH4PoQvTSSUXpSYlSE44o45oaYDYpJDMQ6IoIbqWDORwqMZjfb9k9RV6whp54ObFtR23svRfGUAhOMhCUR1gUTsaav24gppRqX_IVJODOWO00SGgPsv4CnsNnceVeT41t9_i9Lr8PRZauzQL-LSk2h_hJdtCm4u6EHeb-9lGK1DtoI0ltcBddN38AACHMzOZ4FuoYxtVhbuT56nn-C_vuOcxyWE_9DQajObqCo_6GQn7e-gx6z_c3JGF9wFxnUTVhKuyYMxY6zdOpgKcppYJUwglQFLwzMNKXkpPd4xITOpU6rmQ9ed3CpClSPZRq5pWcICwVs6DkCoTSDSX4CesY6mzJrhzpkylh6gXnjv_aOQt8iA4HQd8GPJFGPK_wnD0Hxc5Russ2OvGbtgT1KpnX3CKVu28fv2cncUIfwNveaUM |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Fall+Detection+Algorithm+Based+on+YOLOv8%3A+OEF-YOLO&rft.jtitle=Ji+suan+ji+gong+cheng&rft.au=SONG+Jie%2C+XU+Huiying%2C+ZHU+Xinzhong%2C+HUANG+Xiao%2C+CHEN+Chen%2C+WANG+Zeyu&rft.date=2025-07-01&rft.pub=Editorial+Office+of+Computer+Engineering&rft.issn=1000-3428&rft.volume=51&rft.issue=7&rft.spage=127&rft.epage=139&rft_id=info:doi/10.19678%2Fj.issn.1000-3428.0069257&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d4c7f488eeb64e7b80900719d0287131 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1000-3428&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1000-3428&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1000-3428&client=summon |