Prediction of Ultimate Bearing Capacity of Skirted Footing Resting on Sand Using Artificial Neural Networks
The paper presents the prediction of ultimate bearing capacity of different regular shaped skirted footing resting on sand using artificial neural network. The input parameters for the artificial neural network model were normalised skirt depth, area of the footing and the friction angle of the sand...
Uložené v:
| Vydané v: | Journal of soft computing in civil engineering Ročník 2; číslo 4; s. 34 - 46 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Pouyan Press
01.10.2018
|
| Predmet: | |
| ISSN: | 2588-2872, 2588-2872 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The paper presents the prediction of ultimate bearing capacity of different regular shaped skirted footing resting on sand using artificial neural network. The input parameters for the artificial neural network model were normalised skirt depth, area of the footing and the friction angle of the sand, while the output was the ultimate bearing capacity. The artificial neural network algorithm uses a back propagation model. The training of artificial neural network model has been conducted and the weights were obtained which described the relationship between the input parameters and output ultimate bearing capacity. Further, the sensitivity analysis has been performed and the parameters affecting the ultimate bearing capacity of different regular shaped skirted footing resting on sand were identified. The study shows that the prediction accuracy of ultimate bearing capacity of different regular shaped skirted footing resting on sand using artificial neural network model was quite good. |
|---|---|
| AbstractList | The paper presents the prediction of ultimate bearing capacity of different regular shaped skirted footing resting on sand using artificial neural network. The input parameters for the artificial neural network model were normalised skirt depth, area of the footing and the friction angle of the sand, while the output was the ultimate bearing capacity. The artificial neural network algorithm uses a back propagation model. The training of artificial neural network model has been conducted and the weights were obtained which described the relationship between the input parameters and output ultimate bearing capacity. Further, the sensitivity analysis has been performed and the parameters affecting the ultimate bearing capacity of different regular shaped skirted footing resting on sand were identified. The study shows that the prediction accuracy of ultimate bearing capacity of different regular shaped skirted footing resting on sand using artificial neural network model was quite good. |
| Author | Tammineni Gnananandarao Radha Rani Rakesh Dutta |
| Author_xml | – sequence: 1 fullname: Rakesh Dutta organization: Department of Civil Engineering, NIT Hamirpur, Himachal Pradesh, India – sequence: 2 fullname: Radha Rani organization: Department of Civil Engineering, NIT Hamirpur, Himachal Pradesh, India – sequence: 3 fullname: Tammineni Gnananandarao organization: Department of Civil Engineering, NIT Hamirpur, Himachal Pradesh, India |
| BookMark | eNpNkNtKw0AQhhepYK19BckLJO4pm-xlLVYLRcXa6zB7KtvGbNmsSN--afVCGPhn5meG-eYWjbrQWYTuCS4oJaR86LW2BcWkLghjFacFwUJcoTEt6zqndUVH__IbNO37HcaYUi54Rcdo_x6t8Tr50GXBZZs2-S9INnu0EH23zeZwAO3T8Wyu9z4ma7JFCOnsfdj-osPoGjqTbfpzNYvJO689tNmr_Y4XST8h7vs7dO2g7e30Tydos3j6nL_kq7fn5Xy2yg1hIuVOg5IGSlUyWinhuBSs0rIqrZSi1gpqMwA5gQlWXEhdMecGdHDGGsd4zSZo-bvXBNg1hzgQxWMTwDeXRojbBoYjdWsbRodPOBDSEcqVJEqBBD0ESEFKwdkJnyNsZQ |
| ContentType | Journal Article |
| DBID | DOA |
| DOI | 10.22115/scce.2018.133742.1066 |
| DatabaseName | DOAJ Directory of Open Access Journals |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2588-2872 |
| EndPage | 46 |
| ExternalDocumentID | oai_doaj_org_article_32224fa69f124b91bba9ac9aca961564 |
| GroupedDBID | ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV GROUPED_DOAJ M~E OK1 |
| ID | FETCH-LOGICAL-d136t-fcab9da5b5327b6f49637c975e9968cba8d258f6010b469c73ff337afdedf3483 |
| IEDL.DBID | DOA |
| ISSN | 2588-2872 |
| IngestDate | Fri Oct 03 12:39:46 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-d136t-fcab9da5b5327b6f49637c975e9968cba8d258f6010b469c73ff337afdedf3483 |
| OpenAccessLink | https://doaj.org/article/32224fa69f124b91bba9ac9aca961564 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_32224fa69f124b91bba9ac9aca961564 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-10-01 |
| PublicationDateYYYYMMDD | 2018-10-01 |
| PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of soft computing in civil engineering |
| PublicationYear | 2018 |
| Publisher | Pouyan Press |
| Publisher_xml | – name: Pouyan Press |
| SSID | ssj0002246472 |
| Score | 2.1250887 |
| Snippet | The paper presents the prediction of ultimate bearing capacity of different regular shaped skirted footing resting on sand using artificial neural network. The... |
| SourceID | doaj |
| SourceType | Open Website |
| StartPage | 34 |
| SubjectTerms | artificial neural network different regular shaped skirted footings feed forward backpropagation algorithm multiple regression analysis ultimate bearing capacity |
| Title | Prediction of Ultimate Bearing Capacity of Skirted Footing Resting on Sand Using Artificial Neural Networks |
| URI | https://doaj.org/article/32224fa69f124b91bba9ac9aca961564 |
| Volume | 2 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 2588-2872 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002246472 issn: 2588-2872 databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2588-2872 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002246472 issn: 2588-2872 databaseCode: M~E dateStart: 20170101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07a8MwEBYldOjSd-kbDV3dRJZfGpuQ0KUhNA1kMyfJgjTFLo7bsb-9d7IL6dSlYCywsWXfSf7uQ-fvGLsTZhDayLkA0V0HUQImAAsQhBKUUMYJ0NYXm0in02y5VLOtUl-UE9bKA7eG69NKQOQgUQ6RSCuhNSgwuIFKSOiEvr6DVG2RqVcv6hKRLjpVlotpKGRp2P4eHCLhifsbY0giU2T3SNGQHCKHTX6r9nt4mRyy_S4u5A_t8xyxnaI8Zgc_NRd4NwVP2HpW09IKmZNXji_emhXGnAUf4ohFFOIjBD-DkTWdnK9XNQaUfFJVlNzMn0lRA1u8dA6l5T5dwHfZykhwUurwjU8N35yyxWT8MnoMuoIJgRUyaQJnQCsLsY5lmOrERTi7UqPSuEBWkxkNmUVzOOJgGmmxSaVz-P7gbGGdjDJ5xnplVRbnjGuRFXIAQprYRGCVVk6h5XUICOlWmgs2JGPl760mRk4q1f4A-i7vfJf_5bvL_7jJFdsjT7YJdtes19QfxQ3bNZ_NalPf-mGB-6ev8Tej-b60 |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Ultimate+Bearing+Capacity+of+Skirted+Footing+Resting+on+Sand+Using+Artificial+Neural+Networks&rft.jtitle=Journal+of+soft+computing+in+civil+engineering&rft.au=Rakesh+Dutta&rft.au=Radha+Rani&rft.au=Tammineni+Gnananandarao&rft.date=2018-10-01&rft.pub=Pouyan+Press&rft.issn=2588-2872&rft.eissn=2588-2872&rft.volume=2&rft.issue=4&rft.spage=34&rft.epage=46&rft_id=info:doi/10.22115%2Fscce.2018.133742.1066&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_32224fa69f124b91bba9ac9aca961564 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2588-2872&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2588-2872&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2588-2872&client=summon |