Prediction of Ultimate Bearing Capacity of Skirted Footing Resting on Sand Using Artificial Neural Networks

The paper presents the prediction of ultimate bearing capacity of different regular shaped skirted footing resting on sand using artificial neural network. The input parameters for the artificial neural network model were normalised skirt depth, area of the footing and the friction angle of the sand...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of soft computing in civil engineering Ročník 2; číslo 4; s. 34 - 46
Hlavní autori: Rakesh Dutta, Radha Rani, Tammineni Gnananandarao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Pouyan Press 01.10.2018
Predmet:
ISSN:2588-2872, 2588-2872
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The paper presents the prediction of ultimate bearing capacity of different regular shaped skirted footing resting on sand using artificial neural network. The input parameters for the artificial neural network model were normalised skirt depth, area of the footing and the friction angle of the sand, while the output was the ultimate bearing capacity. The artificial neural network algorithm uses a back propagation model. The training of artificial neural network model has been conducted and the weights were obtained which described the relationship between the input parameters and output ultimate bearing capacity. Further, the sensitivity analysis has been performed and the parameters affecting the ultimate bearing capacity of different regular shaped skirted footing resting on sand were identified. The study shows that the prediction accuracy of ultimate bearing capacity of different regular shaped skirted footing resting on sand using artificial neural network model was quite good.
AbstractList The paper presents the prediction of ultimate bearing capacity of different regular shaped skirted footing resting on sand using artificial neural network. The input parameters for the artificial neural network model were normalised skirt depth, area of the footing and the friction angle of the sand, while the output was the ultimate bearing capacity. The artificial neural network algorithm uses a back propagation model. The training of artificial neural network model has been conducted and the weights were obtained which described the relationship between the input parameters and output ultimate bearing capacity. Further, the sensitivity analysis has been performed and the parameters affecting the ultimate bearing capacity of different regular shaped skirted footing resting on sand were identified. The study shows that the prediction accuracy of ultimate bearing capacity of different regular shaped skirted footing resting on sand using artificial neural network model was quite good.
Author Tammineni Gnananandarao
Radha Rani
Rakesh Dutta
Author_xml – sequence: 1
  fullname: Rakesh Dutta
  organization: Department of Civil Engineering, NIT Hamirpur, Himachal Pradesh, India
– sequence: 2
  fullname: Radha Rani
  organization: Department of Civil Engineering, NIT Hamirpur, Himachal Pradesh, India
– sequence: 3
  fullname: Tammineni Gnananandarao
  organization: Department of Civil Engineering, NIT Hamirpur, Himachal Pradesh, India
BookMark eNpNkNtKw0AQhhepYK19BckLJO4pm-xlLVYLRcXa6zB7KtvGbNmsSN--afVCGPhn5meG-eYWjbrQWYTuCS4oJaR86LW2BcWkLghjFacFwUJcoTEt6zqndUVH__IbNO37HcaYUi54Rcdo_x6t8Tr50GXBZZs2-S9INnu0EH23zeZwAO3T8Wyu9z4ma7JFCOnsfdj-osPoGjqTbfpzNYvJO689tNmr_Y4XST8h7vs7dO2g7e30Tydos3j6nL_kq7fn5Xy2yg1hIuVOg5IGSlUyWinhuBSs0rIqrZSi1gpqMwA5gQlWXEhdMecGdHDGGsd4zSZo-bvXBNg1hzgQxWMTwDeXRojbBoYjdWsbRodPOBDSEcqVJEqBBD0ESEFKwdkJnyNsZQ
ContentType Journal Article
DBID DOA
DOI 10.22115/scce.2018.133742.1066
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2588-2872
EndPage 46
ExternalDocumentID oai_doaj_org_article_32224fa69f124b91bba9ac9aca961564
GroupedDBID ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
GROUPED_DOAJ
M~E
OK1
ID FETCH-LOGICAL-d136t-fcab9da5b5327b6f49637c975e9968cba8d258f6010b469c73ff337afdedf3483
IEDL.DBID DOA
ISSN 2588-2872
IngestDate Fri Oct 03 12:39:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d136t-fcab9da5b5327b6f49637c975e9968cba8d258f6010b469c73ff337afdedf3483
OpenAccessLink https://doaj.org/article/32224fa69f124b91bba9ac9aca961564
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_32224fa69f124b91bba9ac9aca961564
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of soft computing in civil engineering
PublicationYear 2018
Publisher Pouyan Press
Publisher_xml – name: Pouyan Press
SSID ssj0002246472
Score 2.1250887
Snippet The paper presents the prediction of ultimate bearing capacity of different regular shaped skirted footing resting on sand using artificial neural network. The...
SourceID doaj
SourceType Open Website
StartPage 34
SubjectTerms artificial neural network
different regular shaped skirted footings
feed forward backpropagation algorithm
multiple regression analysis
ultimate bearing capacity
Title Prediction of Ultimate Bearing Capacity of Skirted Footing Resting on Sand Using Artificial Neural Networks
URI https://doaj.org/article/32224fa69f124b91bba9ac9aca961564
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2588-2872
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002246472
  issn: 2588-2872
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2588-2872
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002246472
  issn: 2588-2872
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07a8MwEBYldOjSd-kbDV3dRJZfGpuQ0KUhNA1kMyfJgjTFLo7bsb-9d7IL6dSlYCywsWXfSf7uQ-fvGLsTZhDayLkA0V0HUQImAAsQhBKUUMYJ0NYXm0in02y5VLOtUl-UE9bKA7eG69NKQOQgUQ6RSCuhNSgwuIFKSOiEvr6DVG2RqVcv6hKRLjpVlotpKGRp2P4eHCLhifsbY0giU2T3SNGQHCKHTX6r9nt4mRyy_S4u5A_t8xyxnaI8Zgc_NRd4NwVP2HpW09IKmZNXji_emhXGnAUf4ohFFOIjBD-DkTWdnK9XNQaUfFJVlNzMn0lRA1u8dA6l5T5dwHfZykhwUurwjU8N35yyxWT8MnoMuoIJgRUyaQJnQCsLsY5lmOrERTi7UqPSuEBWkxkNmUVzOOJgGmmxSaVz-P7gbGGdjDJ5xnplVRbnjGuRFXIAQprYRGCVVk6h5XUICOlWmgs2JGPl760mRk4q1f4A-i7vfJf_5bvL_7jJFdsjT7YJdtes19QfxQ3bNZ_NalPf-mGB-6ev8Tej-b60
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Ultimate+Bearing+Capacity+of+Skirted+Footing+Resting+on+Sand+Using+Artificial+Neural+Networks&rft.jtitle=Journal+of+soft+computing+in+civil+engineering&rft.au=Rakesh+Dutta&rft.au=Radha+Rani&rft.au=Tammineni+Gnananandarao&rft.date=2018-10-01&rft.pub=Pouyan+Press&rft.issn=2588-2872&rft.eissn=2588-2872&rft.volume=2&rft.issue=4&rft.spage=34&rft.epage=46&rft_id=info:doi/10.22115%2Fscce.2018.133742.1066&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_32224fa69f124b91bba9ac9aca961564
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2588-2872&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2588-2872&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2588-2872&client=summon