Fuzzy dynamic programming problem for single additive constraint with multiplicatively separable return in terms of trapezoidal membership functions

Dynamic programming problems (DP) are multivariable optimization problems that can be decomposed into a series of stages, and optimization is done at each stage with respect to one variable only. DP allows a suitable quantitative study procedure that can be used to assess various optimization proble...

Full description

Saved in:
Bibliographic Details
Published in:Wārasān Songkhlā Nakharin Vol. 41; no. 4; pp. 761 - 768
Main Authors: Kaliyaperumal Palanivel, Prakasam Muralikrishna
Format: Journal Article
Language:English
Published: Prince of Songkla University 01.08.2019
Subjects:
ISSN:0125-3395
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Dynamic programming problems (DP) are multivariable optimization problems that can be decomposed into a series of stages, and optimization is done at each stage with respect to one variable only. DP allows a suitable quantitative study procedure that can be used to assess various optimization problems. The technique offers an efficient procedure for finding optimal decisions. Here, we address a Fuzzy Dynamic Programming Problem with a single additive constraint and multiplicatively separable return, with the support of trapezoidal membership functions and related arithmetic operations. The procedure has been adapted from Fuzzy Dynamic Programming Problem (FDPP). The fuzzified version of the problem is stated and illustrated with a numerical example, and it is shown that the proposed procedure is more efficient in handling the dynamic programming problem than alternative classical procedures. As a final point, the optimal solution is provided in the form of fuzzy numbers with trapezoidal fuzzy membership functions, and also the solution is compared with existing methodology in a numerical example.
AbstractList Dynamic programming problems (DP) are multivariable optimization problems that can be decomposed into a series of stages, and optimization is done at each stage with respect to one variable only. DP allows a suitable quantitative study procedure that can be used to assess various optimization problems. The technique offers an efficient procedure for finding optimal decisions. Here, we address a Fuzzy Dynamic Programming Problem with a single additive constraint and multiplicatively separable return, with the support of trapezoidal membership functions and related arithmetic operations. The procedure has been adapted from Fuzzy Dynamic Programming Problem (FDPP). The fuzzified version of the problem is stated and illustrated with a numerical example, and it is shown that the proposed procedure is more efficient in handling the dynamic programming problem than alternative classical procedures. As a final point, the optimal solution is provided in the form of fuzzy numbers with trapezoidal fuzzy membership functions, and also the solution is compared with existing methodology in a numerical example.
Author Prakasam Muralikrishna
Kaliyaperumal Palanivel
Author_xml – sequence: 1
  fullname: Kaliyaperumal Palanivel
  organization: Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014 India
– sequence: 2
  fullname: Prakasam Muralikrishna
  organization: PG and Research Department of Mathematics, Muthurangam Government Arts College (Autonomous), Vellore, Tamil Nadu, 632002 India
BookMark eNotjMtOwzAQRb0AifL4AHb-gRQ7tptmiRCPSkhsYB1N7HHrKrYj2wG138EHkwKrGZ177r0kZyEGJOSWsyWXUq3u8j6XaszTsma8XbbNGVkwXqtKiFZdkMuc94zJGfAF-X6ajscDNYcA3mk6prhN4L0L29PfD-ipjYnmGQxIwRhX3CdSHUMuCVwo9MuVHfXTUNw4OA2neDjQjCMkmPs0YZlSoC7QgslnGi2dmyMeozMwUI--x5R3bqR2Crq4efmanFsYMt783yvy8fT4_vBSvb49bx7uXyvDxapUiNIAl4zbpq5Vv26tYLxXhoGEXgiAWbPC1qLWs9HwZoWz3uq2tWtTGyWuyOZv10TYd2NyHtKhi-C6XxDTtoNUnB6wE9CAEdivEZQUWvaNbIxSTPecmVZx8QMXYnvM
ContentType Journal Article
DBID DOA
DOI 10.14456/sjst-psu.2019.97
DatabaseName Directory of Open Access Journals (DOAJ)
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EndPage 768
ExternalDocumentID oai_doaj_org_article_3a7ad3eb8ea543c4b747d550cb10d951
GroupedDBID 123
29R
2WC
5VS
ABDBF
ACUHS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BCNDV
DIK
E3Z
EBD
EOJEC
ESX
GROUPED_DOAJ
GX1
HH5
KQ8
M~E
OBODZ
OK1
OVT
RNS
TUS
XSB
~8M
ID FETCH-LOGICAL-d136t-ee4da1401f7225b89f301b5d0a4ab33aad13f3f232cf727176ea149c99f8d2d53
IEDL.DBID DOA
ISSN 0125-3395
IngestDate Tue Oct 14 19:06:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d136t-ee4da1401f7225b89f301b5d0a4ab33aad13f3f232cf727176ea149c99f8d2d53
OpenAccessLink https://doaj.org/article/3a7ad3eb8ea543c4b747d550cb10d951
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_3a7ad3eb8ea543c4b747d550cb10d951
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Wārasān Songkhlā Nakharin
PublicationYear 2019
Publisher Prince of Songkla University
Publisher_xml – name: Prince of Songkla University
SSID ssj0041251
Score 1.7383645
Snippet Dynamic programming problems (DP) are multivariable optimization problems that can be decomposed into a series of stages, and optimization is done at each...
SourceID doaj
SourceType Open Website
StartPage 761
SubjectTerms fuzzy additive constraint
fuzzy dynamic programming problem
fuzzy multiplicatively separable return
trapezoidal fuzzy numbers
Title Fuzzy dynamic programming problem for single additive constraint with multiplicatively separable return in terms of trapezoidal membership functions
URI https://doaj.org/article/3a7ad3eb8ea543c4b747d550cb10d951
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 0125-3395
  databaseCode: DOA
  dateStart: 20030101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0041251
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQYmBBIEB86wZW06ROYnsERMVUMYDULfKnVNSmqEkrtb-DH8xdEqRuLKyRE1k-2_ee83yPsXtfKFMEYbhTQ8czKROu0sLz6IOT1kg6xGrNJuR4rCYT_bZj9UWasK48cDdwA2Gk8SJYFUyeCZdZxL8eYbWzaeJ1e3l6mEj9S6a6PTijtN2KF4c5F0Ln_f_MDOHCoP6sG04UFHOffqBqTzvV-tu0MjpmRz0ehMeuHydsL1Sn7Hu02m434Du3eOg1VHPMMtAbwABiTSCaPwtAkiDatMAR1iPLhwboeBV6sWB7KrcOsw3UgSp94_uwDJhqKphWQFtzDYsIDd3D2i6mHrszD-QTQkIuoMTXzs0z9jF6eX9-5b19AvepKBoeQuYN8acocdFapSMuZpv7xGTGCmEMNosiIqRy2AJpXRGwuXZaR-WHPhfnbL9aVOGCAQKjaFKjrPXIcLJUeSRq3sQU0aPQabxkTzSE5VdXIaOkmtXtA4xk2Uey_CuSV__xkWt2SGHtJHo3bL9ZrsItO3DrZlov79pJ8gMCgMeO
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+dynamic+programming+problem+for+single+additive+constraint+with+multiplicatively+separable+return+in+terms+of+trapezoidal+membership+functions&rft.jtitle=W%C4%81ras%C4%81n+Songkhl%C4%81+Nakharin&rft.au=Kaliyaperumal+Palanivel&rft.au=Prakasam+Muralikrishna&rft.date=2019-08-01&rft.pub=Prince+of+Songkla+University&rft.issn=0125-3395&rft.volume=41&rft.issue=4&rft.spage=761&rft.epage=768&rft_id=info:doi/10.14456%2Fsjst-psu.2019.97&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3a7ad3eb8ea543c4b747d550cb10d951
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0125-3395&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0125-3395&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0125-3395&client=summon