Density-Based clustering in mapReduce with guarantees on parallel time, space, and solution quality

A well-known clustering problem called Density-Based Spatial Clustering of Applications with Noise~(DBSCAN) involves computing the solutions of at least one disk range query per input point, computing the connected components of a graph, and bichromatic fixed-radius nearest neighbor. MapReduce class...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions on combinatorics Jg. 14; H. 3; S. 135 - 156
Hauptverfasser: Sepideh Aghamolaei, Mohammad Ghodsi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: University of Isfahan 2025
Schlagworte:
ISSN:2251-8657, 2251-8665
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A well-known clustering problem called Density-Based Spatial Clustering of Applications with Noise~(DBSCAN) involves computing the solutions of at least one disk range query per input point, computing the connected components of a graph, and bichromatic fixed-radius nearest neighbor. MapReduce class is a model where a sublinear number of machines, each with sublinear memory, run for a polylogarithmic number of parallel rounds. Most of these problems either require quadratic time in the sequential model or are hard to compute in a constant number of rounds in MapReduce. In the Euclidean plane, DBSCAN algorithms with near-linear time and a randomized parallel algorithm with a polylogarithmic number of rounds exist. We solve DBSCAN in the Euclidean plane in a constant number of rounds in MapReduce, assuming the minimum number of points in range queries is constant and each connected component fits inside the memory of a single machine and has a constant diameter.
ISSN:2251-8657
2251-8665
DOI:10.22108/toc.2024.138377.2091