Study on Uncertainty Operation Optimization of Virtual Power Plant Based on Intelligent Prediction Model Under Climate Change
In order to effectively cope with climate change and promote the healthy development of virtual power plant, an uncertainty operation optimization model of virtual power plant (VPP) adapted to climate change was proposed based on the providing regional climate for impact studies (PRECIS), BP neural...
Uloženo v:
| Vydáno v: | 发电技术 Ročník 44; číslo 6; s. 790 - 799 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | čínština angličtina |
| Vydáno: |
Editorial Department of Power Generation Technology
31.12.2023
|
| Témata: | |
| ISSN: | 2096-4528 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In order to effectively cope with climate change and promote the healthy development of virtual power plant, an uncertainty operation optimization model of virtual power plant (VPP) adapted to climate change was proposed based on the providing regional climate for impact studies (PRECIS), BP neural network prediction model and interval optimization algorithm. PRECIS was used to simulate the changes in meteorological factors such as temperature,wind speed and radiation under different carbon emission scenarios in 2025. The BP neural network model was used to predict the power generation of photovoltaic power plants based on the simulation results of PRICES. The interval optimization algorithm was coupled with the power generation prediction results to reduce the impact caused by the influence of photovoltaic power generation uncertainty on the simulation results of the optimization model. The results show that the model can not only generate the optimal operation strategy of VPP under climate change, but also reduce operating costs and improve economic benefits. |
|---|---|
| AbstractList | In order to effectively cope with climate change and promote the healthy development of virtual power plant, an uncertainty operation optimization model of virtual power plant (VPP) adapted to climate change was proposed based on the providing regional climate for impact studies (PRECIS), BP neural network prediction model and interval optimization algorithm. PRECIS was used to simulate the changes in meteorological factors such as temperature,wind speed and radiation under different carbon emission scenarios in 2025. The BP neural network model was used to predict the power generation of photovoltaic power plants based on the simulation results of PRICES. The interval optimization algorithm was coupled with the power generation prediction results to reduce the impact caused by the influence of photovoltaic power generation uncertainty on the simulation results of the optimization model. The results show that the model can not only generate the optimal operation strategy of VPP under climate change, but also reduce operating costs and improve economic benefits. |
| Author | GAN Haiqing YANG Nan JIA Xiaoqiang DU Jiao YANG Yongbiao |
| Author_xml | – sequence: 1 fullname: JIA Xiaoqiang organization: State Key Laboratory of Power Grid Safety (China Electric Power Research Institute), Haidian District, Beijing 100192, China – sequence: 2 fullname: YANG Yongbiao organization: School of Electrical Engineering, Southeast University, Nanjing 210096, Jiangsu Province, China – sequence: 3 fullname: DU Jiao organization: School of Electrical Engineering, Southeast University, Nanjing 210096, Jiangsu Province, China – sequence: 4 fullname: GAN Haiqing organization: State Grid Jiagnsu Electric Power Co., Ltd., Nanjing 210000, Jiangsu Province, China – sequence: 5 fullname: YANG Nan organization: State Grid Jiangsu Electric Power Co., Ltd., Nanjing Power Supply Branch, Nanjing 210000, Jiangsu Province, China |
| BookMark | eNo9jttKw0AUReehglX7C5IfSJxLOsk8avBSqLSg9TWczJzEKWkmTKZIBf_dtBWfNnvBXudckUnnOiTkltGEcark3TY5RpzOeZ70TUi4oCqdkOk_vSSzYbAVTRmXXEg5JT9vYW8OkeuiTafRB7BdOESrHj0EO9JVH-zOfp-Lq6MP68Me2mjtvtBH6xa6ED3AgOaoWHQB29Y2OMK1R2P1afbqDLaj34yLorU7CBgVn9A1eEMuamgHnP3lNdk8Pb4XL_Fy9bwo7pexYUKG2KgU0KDiktGKGkXTWmAGRiuO2kAm5qCrvM6M1kwowVWNVGW0zmsp8spk4poszl7jYFv2fvzBH0oHtjwB55sSfLC6xTJDM94RQGUm09qIijOdCcY01SCZqMQvsstyIA |
| ContentType | Journal Article |
| DBID | DOA |
| DOI | 10.12096/j.2096-4528.pgt.23094 |
| DatabaseName | DOAJ Directory of Open Access Journals |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| EndPage | 799 |
| ExternalDocumentID | oai_doaj_org_article_7ed9263a06764fd3b21c7311c0ca613b |
| GroupedDBID | ALMA_UNASSIGNED_HOLDINGS GROUPED_DOAJ |
| ID | FETCH-LOGICAL-d136t-d94aede92610b0d904f3e7adc92ecda735acb8f7dcc139329fe0970f8f638bd73 |
| IEDL.DBID | DOA |
| ISSN | 2096-4528 |
| IngestDate | Fri Oct 03 12:35:35 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 6 |
| Language | Chinese English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-d136t-d94aede92610b0d904f3e7adc92ecda735acb8f7dcc139329fe0970f8f638bd73 |
| OpenAccessLink | https://doaj.org/article/7ed9263a06764fd3b21c7311c0ca613b |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7ed9263a06764fd3b21c7311c0ca613b |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-31 |
| PublicationDateYYYYMMDD | 2023-12-31 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-31 day: 31 |
| PublicationDecade | 2020 |
| PublicationTitle | 发电技术 |
| PublicationYear | 2023 |
| Publisher | Editorial Department of Power Generation Technology |
| Publisher_xml | – name: Editorial Department of Power Generation Technology |
| SSID | ssib041262366 ssib034324927 ssib035757009 ssib036435514 ssib051370658 |
| Score | 2.2493844 |
| Snippet | In order to effectively cope with climate change and promote the healthy development of virtual power plant, an uncertainty operation optimization model of... |
| SourceID | doaj |
| SourceType | Open Website |
| StartPage | 790 |
| SubjectTerms | bp neural network climate change providing regional climate for impact studies (precis) uncertainty optimization virtual power plant (vpp) |
| Title | Study on Uncertainty Operation Optimization of Virtual Power Plant Based on Intelligent Prediction Model Under Climate Change |
| URI | https://doaj.org/article/7ed9263a06764fd3b21c7311c0ca613b |
| Volume | 44 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 2096-4528 databaseCode: DOA dateStart: 20230101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: false ssIdentifier: ssib034324927 providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYmBBIEC85YE1xa_E8QgIBAt0AMRW-YmKoK1KQOrAf-fOCaVMLGyxJVvKneP7orv7PkKOUVnU6lyp5m2hRJCF1SUvQqqc5D5YYV0Wm9A3N_Xjo-kvSH1hTVhLD9wa7kTHYEQlLdyqlUpBOsG9lpx75i2EIoe3L9Nm4WcKThJ2Syoj5oFVAijR7IeoSkIcRqjwPVZcAAz4ATYll5j-y3J2gPELVYq6ay_G8clzbz7dmzw1WE1t1C_W_xyeLtfJWocr6Wn7PhtkKY42ySdWCc7oeETvwbc599_M6O0ktm6Hp2b42jVi0nGiD8MptpPQPkqnUdQzaugZhLmAW1zPyTsb2p9ificvQzG1F5rlk-j5yxAAcKRty8IWub-8uDu_Kjq9hSJwWTVFMMrGEMHcnDkWDFNJRm2DNyKC17QsrXd10sF7wI1SmBSZ0SzVCT5iF7TcJsuj8SjuEKrqIGLSsXYyqLqylidvInelTAwCYNglZ2irwaSl1BggyXWeANcPOtcP_nL93n9ssk9WUUG-5W48IMvN9D0ekhX_0Qzfpkf5VH0BiinL3Q |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+Uncertainty+Operation+Optimization+of+Virtual+Power+Plant+Based+on+Intelligent+Prediction+Model+Under+Climate+Change&rft.jtitle=%E5%8F%91%E7%94%B5%E6%8A%80%E6%9C%AF&rft.au=JIA+Xiaoqiang&rft.au=YANG+Yongbiao&rft.au=DU+Jiao&rft.au=GAN+Haiqing&rft.date=2023-12-31&rft.pub=Editorial+Department+of+Power+Generation+Technology&rft.issn=2096-4528&rft.volume=44&rft.issue=6&rft.spage=790&rft.epage=799&rft_id=info:doi/10.12096%2Fj.2096-4528.pgt.23094&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7ed9263a06764fd3b21c7311c0ca613b |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2096-4528&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2096-4528&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2096-4528&client=summon |