Study on Uncertainty Operation Optimization of Virtual Power Plant Based on Intelligent Prediction Model Under Climate Change

In order to effectively cope with climate change and promote the healthy development of virtual power plant, an uncertainty operation optimization model of virtual power plant (VPP) adapted to climate change was proposed based on the providing regional climate for impact studies (PRECIS), BP neural...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:发电技术 Ročník 44; číslo 6; s. 790 - 799
Hlavní autoři: JIA Xiaoqiang, YANG Yongbiao, DU Jiao, GAN Haiqing, YANG Nan
Médium: Journal Article
Jazyk:čínština
angličtina
Vydáno: Editorial Department of Power Generation Technology 31.12.2023
Témata:
ISSN:2096-4528
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In order to effectively cope with climate change and promote the healthy development of virtual power plant, an uncertainty operation optimization model of virtual power plant (VPP) adapted to climate change was proposed based on the providing regional climate for impact studies (PRECIS), BP neural network prediction model and interval optimization algorithm. PRECIS was used to simulate the changes in meteorological factors such as temperature,wind speed and radiation under different carbon emission scenarios in 2025. The BP neural network model was used to predict the power generation of photovoltaic power plants based on the simulation results of PRICES. The interval optimization algorithm was coupled with the power generation prediction results to reduce the impact caused by the influence of photovoltaic power generation uncertainty on the simulation results of the optimization model. The results show that the model can not only generate the optimal operation strategy of VPP under climate change, but also reduce operating costs and improve economic benefits.
AbstractList In order to effectively cope with climate change and promote the healthy development of virtual power plant, an uncertainty operation optimization model of virtual power plant (VPP) adapted to climate change was proposed based on the providing regional climate for impact studies (PRECIS), BP neural network prediction model and interval optimization algorithm. PRECIS was used to simulate the changes in meteorological factors such as temperature,wind speed and radiation under different carbon emission scenarios in 2025. The BP neural network model was used to predict the power generation of photovoltaic power plants based on the simulation results of PRICES. The interval optimization algorithm was coupled with the power generation prediction results to reduce the impact caused by the influence of photovoltaic power generation uncertainty on the simulation results of the optimization model. The results show that the model can not only generate the optimal operation strategy of VPP under climate change, but also reduce operating costs and improve economic benefits.
Author GAN Haiqing
YANG Nan
JIA Xiaoqiang
DU Jiao
YANG Yongbiao
Author_xml – sequence: 1
  fullname: JIA Xiaoqiang
  organization: State Key Laboratory of Power Grid Safety (China Electric Power Research Institute), Haidian District, Beijing 100192, China
– sequence: 2
  fullname: YANG Yongbiao
  organization: School of Electrical Engineering, Southeast University, Nanjing 210096, Jiangsu Province, China
– sequence: 3
  fullname: DU Jiao
  organization: School of Electrical Engineering, Southeast University, Nanjing 210096, Jiangsu Province, China
– sequence: 4
  fullname: GAN Haiqing
  organization: State Grid Jiagnsu Electric Power Co., Ltd., Nanjing 210000, Jiangsu Province, China
– sequence: 5
  fullname: YANG Nan
  organization: State Grid Jiangsu Electric Power Co., Ltd., Nanjing Power Supply Branch, Nanjing 210000, Jiangsu Province, China
BookMark eNo9jttKw0AUReehglX7C5IfSJxLOsk8avBSqLSg9TWczJzEKWkmTKZIBf_dtBWfNnvBXudckUnnOiTkltGEcark3TY5RpzOeZ70TUi4oCqdkOk_vSSzYbAVTRmXXEg5JT9vYW8OkeuiTafRB7BdOESrHj0EO9JVH-zOfp-Lq6MP68Me2mjtvtBH6xa6ED3AgOaoWHQB29Y2OMK1R2P1afbqDLaj34yLorU7CBgVn9A1eEMuamgHnP3lNdk8Pb4XL_Fy9bwo7pexYUKG2KgU0KDiktGKGkXTWmAGRiuO2kAm5qCrvM6M1kwowVWNVGW0zmsp8spk4poszl7jYFv2fvzBH0oHtjwB55sSfLC6xTJDM94RQGUm09qIijOdCcY01SCZqMQvsstyIA
ContentType Journal Article
DBID DOA
DOI 10.12096/j.2096-4528.pgt.23094
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EndPage 799
ExternalDocumentID oai_doaj_org_article_7ed9263a06764fd3b21c7311c0ca613b
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
ID FETCH-LOGICAL-d136t-d94aede92610b0d904f3e7adc92ecda735acb8f7dcc139329fe0970f8f638bd73
IEDL.DBID DOA
ISSN 2096-4528
IngestDate Fri Oct 03 12:35:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 6
Language Chinese
English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d136t-d94aede92610b0d904f3e7adc92ecda735acb8f7dcc139329fe0970f8f638bd73
OpenAccessLink https://doaj.org/article/7ed9263a06764fd3b21c7311c0ca613b
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_7ed9263a06764fd3b21c7311c0ca613b
PublicationCentury 2000
PublicationDate 2023-12-31
PublicationDateYYYYMMDD 2023-12-31
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-31
  day: 31
PublicationDecade 2020
PublicationTitle 发电技术
PublicationYear 2023
Publisher Editorial Department of Power Generation Technology
Publisher_xml – name: Editorial Department of Power Generation Technology
SSID ssib041262366
ssib034324927
ssib035757009
ssib036435514
ssib051370658
Score 2.2493844
Snippet In order to effectively cope with climate change and promote the healthy development of virtual power plant, an uncertainty operation optimization model of...
SourceID doaj
SourceType Open Website
StartPage 790
SubjectTerms bp neural network
climate change
providing regional climate for impact studies (precis)
uncertainty optimization
virtual power plant (vpp)
Title Study on Uncertainty Operation Optimization of Virtual Power Plant Based on Intelligent Prediction Model Under Climate Change
URI https://doaj.org/article/7ed9263a06764fd3b21c7311c0ca613b
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 2096-4528
  databaseCode: DOA
  dateStart: 20230101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssib034324927
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYmBBIEC85YE1xa_E8QgIBAt0AMRW-YmKoK1KQOrAf-fOCaVMLGyxJVvKneP7orv7PkKOUVnU6lyp5m2hRJCF1SUvQqqc5D5YYV0Wm9A3N_Xjo-kvSH1hTVhLD9wa7kTHYEQlLdyqlUpBOsG9lpx75i2EIoe3L9Nm4WcKThJ2Syoj5oFVAijR7IeoSkIcRqjwPVZcAAz4ATYll5j-y3J2gPELVYq6ay_G8clzbz7dmzw1WE1t1C_W_xyeLtfJWocr6Wn7PhtkKY42ySdWCc7oeETvwbc599_M6O0ktm6Hp2b42jVi0nGiD8MptpPQPkqnUdQzaugZhLmAW1zPyTsb2p9ificvQzG1F5rlk-j5yxAAcKRty8IWub-8uDu_Kjq9hSJwWTVFMMrGEMHcnDkWDFNJRm2DNyKC17QsrXd10sF7wI1SmBSZ0SzVCT5iF7TcJsuj8SjuEKrqIGLSsXYyqLqylidvInelTAwCYNglZ2irwaSl1BggyXWeANcPOtcP_nL93n9ssk9WUUG-5W48IMvN9D0ekhX_0Qzfpkf5VH0BiinL3Q
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+Uncertainty+Operation+Optimization+of+Virtual+Power+Plant+Based+on+Intelligent+Prediction+Model+Under+Climate+Change&rft.jtitle=%E5%8F%91%E7%94%B5%E6%8A%80%E6%9C%AF&rft.au=JIA+Xiaoqiang&rft.au=YANG+Yongbiao&rft.au=DU+Jiao&rft.au=GAN+Haiqing&rft.date=2023-12-31&rft.pub=Editorial+Department+of+Power+Generation+Technology&rft.issn=2096-4528&rft.volume=44&rft.issue=6&rft.spage=790&rft.epage=799&rft_id=info:doi/10.12096%2Fj.2096-4528.pgt.23094&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7ed9263a06764fd3b21c7311c0ca613b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2096-4528&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2096-4528&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2096-4528&client=summon