Optimizing Photovoltaic Arrays: A Novel Approach to Maximize Power Output in Varied Shading Patterns

The rapid rise in electrical energy demand and the depletion of fossil fuels have created a market for renewable energy. Among all the renewable energy resources, the most popular is solar energy, perceived as pollution-free, easily accessible, and low maintenance. In non-uniform solar irradiation o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of renewable energy and environment Ročník 11; číslo 2; s. 75 - 88
Hlavní autoři: Zaiba Ishrat, Ankur Gupta, Seema Nayak
Médium: Journal Article
Jazyk:angličtina
Vydáno: Materials and Energy Research Center (MERC) 01.04.2024
Témata:
ISSN:2423-5547, 2423-7469
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The rapid rise in electrical energy demand and the depletion of fossil fuels have created a market for renewable energy. Among all the renewable energy resources, the most popular is solar energy, perceived as pollution-free, easily accessible, and low maintenance. In non-uniform solar irradiation or partial shading conditions (PSC), the photovoltaic characteristics (PVC) of a solar panel system (SPS) exhibit multiple minor peaks (MP) with one global peak power point (GPPP). To extract the utmost energy from the SPS, the authors proposed an efficient hybrid algorithm integrating the advantages of machine learning and the classical algorithm fractional open circuit voltage (FOVA) to track the GPPP. To follow the GPPP of SPS under unstable environmental surroundings, this study tests ML-based hybrid MPPT algorithms, specifically squared multiple variable linear regression algorithms (SMVLRA), using Matlab/Simulink. Simulation through Matlab is employed to validate the efficiency of the SMVLRA-MPPT approach compared to existing popular conventional and modern MPPT algorithms, namely the Perturb and Observation algorithm (P&OA), the variable step size incremental conductance (VINC) algorithm, and an intelligent algorithm, Decision Tree Regression Algorithm (DTRA). The simulation results demonstrate that SMVLRA offers higher peak power and mean peak power efficiency in less tracking time, with lower error and almost negligible steady-state fluctuation under PSC. The proposed algorithm achieves 99.99% efficiency under standard test conditions (1000w/m2, 25°C), 99.95% under PSC1 (1000w/m2, 800w/m2, 25°C), and 98.89% under PSC2 (1000w/m2, 800w/m2, 600w/m2, 25°C)
AbstractList The rapid rise in electrical energy demand and the depletion of fossil fuels have created a market for renewable energy. Among all the renewable energy resources, the most popular is solar energy, perceived as pollution-free, easily accessible, and low maintenance. In non-uniform solar irradiation or partial shading conditions (PSC), the photovoltaic characteristics (PVC) of a solar panel system (SPS) exhibit multiple minor peaks (MP) with one global peak power point (GPPP). To extract the utmost energy from the SPS, the authors proposed an efficient hybrid algorithm integrating the advantages of machine learning and the classical algorithm fractional open circuit voltage (FOVA) to track the GPPP. To follow the GPPP of SPS under unstable environmental surroundings, this study tests ML-based hybrid MPPT algorithms, specifically squared multiple variable linear regression algorithms (SMVLRA), using Matlab/Simulink. Simulation through Matlab is employed to validate the efficiency of the SMVLRA-MPPT approach compared to existing popular conventional and modern MPPT algorithms, namely the Perturb and Observation algorithm (P&OA), the variable step size incremental conductance (VINC) algorithm, and an intelligent algorithm, Decision Tree Regression Algorithm (DTRA). The simulation results demonstrate that SMVLRA offers higher peak power and mean peak power efficiency in less tracking time, with lower error and almost negligible steady-state fluctuation under PSC. The proposed algorithm achieves 99.99% efficiency under standard test conditions (1000w/m2, 25°C), 99.95% under PSC1 (1000w/m2, 800w/m2, 25°C), and 98.89% under PSC2 (1000w/m2, 800w/m2, 600w/m2, 25°C)
Author Zaiba Ishrat
Ankur Gupta
Seema Nayak
Author_xml – sequence: 1
  fullname: Zaiba Ishrat
  organization: Department of Electrical & Electronics Engineering, IIMT University, Meerut, P. O. Box: 250001, India
– sequence: 2
  fullname: Ankur Gupta
  organization: Department of R&D, IIMT University, Meerut, P. O. Box: 250001, India
– sequence: 3
  fullname: Seema Nayak
  organization: Department of Electronics & Communication Engineering, IIMT College Of Engineering, Greater Noida, P. O. Box: 201306, India
BookMark eNotjdlOwkAYhScGExF5BTMvUJyt06l3DXEhQSFxuW3-Mn9hCHSa6YDi04vI1VmS851r0mt8g4TccjaSLGX8bh0QR4IJOVL8mPmI60xdkL5QQiaZ0nnv7NNUZVdk2HVrxpjIhWKZ7hM7a6Pbuh_XLOl85aPf-00Et6BFCHDo7mlBX_0eN7Ro2-BhsaLR0xf4_tsgnfsvDHS2i-0uUtfQTwgOLX1bgT0BIUYMTXdDLmvYdDg864B8PD68j5-T6expMi6mieVSx6SylrOFSLmxILgQGnWVoUwzk4PNcwlSmswA1MoYWbO6rrUFY9DYyuaQghyQyT_XeliXbXBbCIfSgytPhQ_LEkJ0iw2WqLGuUqZ0LbiSAg03mVLHf-RYacvkL2l7adY
ContentType Journal Article
DBID DOA
DOI 10.30501/jree.2023.415011.1674
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2423-7469
EndPage 88
ExternalDocumentID oai_doaj_org_article_e6efb5046f21432e818744d10e1eb6d0
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
ID FETCH-LOGICAL-d136t-bdd10c2518da21226e6b7e35789ad993a33878aaf4883f0fff6da88e8dbd9a5a3
IEDL.DBID DOA
ISSN 2423-5547
IngestDate Fri Oct 03 12:53:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d136t-bdd10c2518da21226e6b7e35789ad993a33878aaf4883f0fff6da88e8dbd9a5a3
OpenAccessLink https://doaj.org/article/e6efb5046f21432e818744d10e1eb6d0
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_e6efb5046f21432e818744d10e1eb6d0
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of renewable energy and environment
PublicationYear 2024
Publisher Materials and Energy Research Center (MERC)
Publisher_xml – name: Materials and Energy Research Center (MERC)
SSID ssj0002924076
Score 2.2515194
Snippet The rapid rise in electrical energy demand and the depletion of fossil fuels have created a market for renewable energy. Among all the renewable energy...
SourceID doaj
SourceType Open Website
StartPage 75
SubjectTerms dtra
matlab/simulink
mppt (maximum power point tracking)
p&oa
smvlra
solar panel system (sps)
squared multivariable linear regression algorithm
vinc
Title Optimizing Photovoltaic Arrays: A Novel Approach to Maximize Power Output in Varied Shading Patterns
URI https://doaj.org/article/e6efb5046f21432e818744d10e1eb6d0
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2423-7469
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002924076
  issn: 2423-5547
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwFLRQxcCCQID4lgdWQ-Mkjs1WEIiFNhIf6hY59rPagaRK0wr49Tw7GcrEwhrFUeKLfe-k5ztCrrh12hjDmZNZyZLECSZTrZjLEid5JErLdQibyMZjOZ2qfCPqy_eEdfbA3cTdgABXpqjiHEdq5yB9iFxioyFEUAob1PowUxtiyu_BXHmlEpLlsF5gyJlZdzwYf2_vOdSAt8jk8TXyl3fx9L34v1z7A7087pHdvi6ko-599skWVAfETnBBf8y_kV5oPqvbGvcSlPIGb2v01_KWjui4XgMO653BaVvTZ_3pxwDNfQAanazaxaql84q-e1ls6csstM3TPDhrVstD8vb48Hr_xPpYBGajWLSstPj1BusSaTUSDxcgygy8a43SFssNjaozk1o7XJuxGzrnhNVSgrSlVTrV8REZVHUFx4RGTvm8lwQSjRJZGoXIxcANhwQym_ITcuenpFh0zheF96IOFxChokeo-Auh0_94yBnZQbz6nplzMmibFVyQbbNu58vmMoD_A_nns44
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Photovoltaic+Arrays%3A+A+Novel+Approach+to+Maximize+Power+Output+in+Varied+Shading+Patterns&rft.jtitle=Journal+of+renewable+energy+and+environment&rft.au=Zaiba+Ishrat&rft.au=Ankur+Gupta&rft.au=Seema+Nayak&rft.date=2024-04-01&rft.pub=Materials+and+Energy+Research+Center+%28MERC%29&rft.issn=2423-5547&rft.eissn=2423-7469&rft.volume=11&rft.issue=2&rft.spage=75&rft.epage=88&rft_id=info:doi/10.30501%2Fjree.2023.415011.1674&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e6efb5046f21432e818744d10e1eb6d0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2423-5547&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2423-5547&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2423-5547&client=summon