Application of OPTICS and Offline Batch Processing in Trajectory Clustering
Trajectory clustering is an important step in spatio-temporal trajectory processing.Common trajectory clustering algorithms,such as TRACLUS algorithm,usually have high time complexity and are sensitive to input parameters,thus consuming a lot of time to find optimal parameters.In order to solve this...
Uloženo v:
| Vydáno v: | Ji suan ji gong cheng Ročník 46; číslo 7; s. 72 - 77,83 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | čínština angličtina |
| Vydáno: |
Editorial Office of Computer Engineering
01.07.2020
|
| Témata: | |
| ISSN: | 1000-3428 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Trajectory clustering is an important step in spatio-temporal trajectory processing.Common trajectory clustering algorithms,such as TRACLUS algorithm,usually have high time complexity and are sensitive to input parameters,thus consuming a lot of time to find optimal parameters.In order to solve this problem,this paper improves the TRACLUS algorithm by using offline batch processing technology and OPTICS algorithm.This optimization reduces the sensitivity of input parameters and the time for trajectory clustering of multiple sets of parameters,so the workload of the manual parameter debugging is reduced.Experimental results show that the time efficiency of the algorithm has been greatly improved when the optimal parameters are unknown and multiple sets of parameters need to be tested. |
|---|---|
| ISSN: | 1000-3428 |
| DOI: | 10.19678/j.issn.1000-3428.0054309 |