A comprehensive review on meta-heuristic algorithms and their classification with novel approach

Conventional and classical optimization methods are not efficient enough to deal with complicated, NP-hard, high-dimensional, non-linear, and hybrid problems. In recent years, the application of meta-heuristic algorithms for such problems increased dramatically and it is widely used in various field...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Applied Research on Industrial Engineering Jg. 8; H. 1; S. 63 - 89
Hauptverfasser: Hojatollah Rajabi Moshtaghi, Abbas Toloie Eshlaghy, Mohammad Reza Motadel
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Ayandegan Institute of Higher Education, Iran 01.03.2021
Schlagworte:
ISSN:2538-5100
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Conventional and classical optimization methods are not efficient enough to deal with complicated, NP-hard, high-dimensional, non-linear, and hybrid problems. In recent years, the application of meta-heuristic algorithms for such problems increased dramatically and it is widely used in various fields. These algorithms, in contrast to exact optimization methods, find the solutions which are very close to the global optimum solution as possible, in such a way that this solution satisfies the threshold constraint with an acceptable level. Most of the meta-heuristic algorithms are inspired by natural phenomena. In this research, a comprehensive review on meta-heuristic algorithms is presented to introduce a large number of them (i.e. about 110 algorithms). Moreover, this research provides a brief explanation along with the source of their inspiration for each algorithm. Also, these algorithms are categorized based on the type of algorithms (e.g. swarm-based, evolutionary, physics-based, and human-based), nature-inspired vs non-nature-inspired based, population-based vs single-solution based. Finally, we present a novel classification of meta-heuristic algorithms based on the country of origin.
AbstractList Conventional and classical optimization methods are not efficient enough to deal with complicated, NP-hard, high-dimensional, non-linear, and hybrid problems. In recent years, the application of meta-heuristic algorithms for such problems increased dramatically and it is widely used in various fields. These algorithms, in contrast to exact optimization methods, find the solutions which are very close to the global optimum solution as possible, in such a way that this solution satisfies the threshold constraint with an acceptable level. Most of the meta-heuristic algorithms are inspired by natural phenomena. In this research, a comprehensive review on meta-heuristic algorithms is presented to introduce a large number of them (i.e. about 110 algorithms). Moreover, this research provides a brief explanation along with the source of their inspiration for each algorithm. Also, these algorithms are categorized based on the type of algorithms (e.g. swarm-based, evolutionary, physics-based, and human-based), nature-inspired vs non-nature-inspired based, population-based vs single-solution based. Finally, we present a novel classification of meta-heuristic algorithms based on the country of origin.
Author Hojatollah Rajabi Moshtaghi
Mohammad Reza Motadel
Abbas Toloie Eshlaghy
Author_xml – sequence: 1
  fullname: Hojatollah Rajabi Moshtaghi
  organization: Department of Industrial Management, Science and Research Branch, Islamic Azad University, Tehran, Iran
– sequence: 2
  fullname: Abbas Toloie Eshlaghy
  organization: Department of Industrial Management, Science and Research Branch, Islamic Azad University, Tehran, Iran
– sequence: 3
  fullname: Mohammad Reza Motadel
  organization: Department of Industrial Management, Central Tehran Branch, Islamic Azad University, Tehran, Iran
BookMark eNotj91Kw0AUhPeigrX2GdwXSNy_JJvLUqpWCoLodTzZPdusJNmwiSm-vUGdm4EZ5oO5Ias-9EjIHWepEJxl98-71-MhFUzwVEhdijzlXLMVWYtM6iTjjF2T7Tj6milVKKkEW5OPHTWhGyI22I9-Rhpx9nihoacdTpA0-BX9OHlDoT2H6KemGyn0lk4N-khNCwvQeQOTXyaXpad9mLGlMAwxgGluyZWDdsTtv2_I-8Phbf-UnF4ej_vdKbFc5lNSOqksZ3Wty9xZzV1ZZ4UDK7TQjkuJyK1UDmqDmeAOdK34IgcCmDB1Ljfk-Me1AT6rIfoO4ncVwFe_QYjnCuLyo8WqYLnLrDGorFKiWFgMlqBUrjDaOiN_APZvaLk
ContentType Journal Article
DBID DOA
DOI 10.22105/JARIE.2021.238926.1180
DatabaseName DOAJ (Directory of Open Access Journals)
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EndPage 89
ExternalDocumentID oai_doaj_org_article_706f5dcce4d4427a8b0af5d94f7c8dfc
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
M~E
ID FETCH-LOGICAL-d136t-9f34d10bb896fd81f9b57fad2828f133ee1d34fabce521fa8b41111fa2a02cb63
IEDL.DBID DOA
ISSN 2538-5100
IngestDate Fri Oct 03 12:43:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d136t-9f34d10bb896fd81f9b57fad2828f133ee1d34fabce521fa8b41111fa2a02cb63
OpenAccessLink https://doaj.org/article/706f5dcce4d4427a8b0af5d94f7c8dfc
PageCount 27
ParticipantIDs doaj_primary_oai_doaj_org_article_706f5dcce4d4427a8b0af5d94f7c8dfc
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of Applied Research on Industrial Engineering
PublicationYear 2021
Publisher Ayandegan Institute of Higher Education, Iran
Publisher_xml – name: Ayandegan Institute of Higher Education, Iran
SSID ssib044743420
Score 2.3600912
Snippet Conventional and classical optimization methods are not efficient enough to deal with complicated, NP-hard, high-dimensional, non-linear, and hybrid problems....
SourceID doaj
SourceType Open Website
StartPage 63
SubjectTerms classification of meta-heuristic algorithms
evolutionary algorithms
meta-heuristic algorithms
meta-heuristic optimization
swarm algorithms
Title A comprehensive review on meta-heuristic algorithms and their classification with novel approach
URI https://doaj.org/article/706f5dcce4d4427a8b0af5d94f7c8dfc
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  issn: 2538-5100
  databaseCode: M~E
  dateStart: 20190101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: false
  ssIdentifier: ssib044743420
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxcCCQID4lgfW0MSxHXssqBUgqBAC1C34kyK1CWrTjvx2znGRysTCksFDFN2d_e5ZL-8QumCZTj2hKuFMciAowiXaQC0Dktsslcb4dkrE630xHIrRSD6ujfoKmrBoDxwD1y1S7pk1xlFLKSmU0KmCBUl9YYT1Jpy-aSHXyBRUEqUAjLT1ZCRhR0PhpVHcRYDisO5d7-m2D-SQAEMExCb8Mjih_bLtb_FlsIO2V40h7sUP2kUbrtpDbz0cNN8zN446cxz_NMF1haeuUcnYLaLTMlaT9xp4_ng6x6qyuL3_xya0xkEL1IYfhztXXNVLN8E_VuL76GXQf76-SVYzERKb5bxJpM8pBFFrIbm3IvNSs8IrG5iTB77pXGZz6pU2DoDZQ7hoOBS9IiolRvP8AHWqunKHCCtbWMGdl4xpagomM2jdAt4bLyzR7AhdhXCUn9H2ogxG1O0CpKdcpaf8Kz3H__GSE7QVchWlX6eo08wW7gxtmmXzMZ-dt5mH58NX_xsv-7Zp
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+review+on+meta-heuristic+algorithms+and+their+classification+with+novel+approach&rft.jtitle=Journal+of+Applied+Research+on+Industrial+Engineering&rft.au=Hojatollah+Rajabi+Moshtaghi&rft.au=Abbas+Toloie+Eshlaghy&rft.au=Mohammad+Reza+Motadel&rft.date=2021-03-01&rft.pub=Ayandegan+Institute+of+Higher+Education%2C+Iran&rft.issn=2538-5100&rft.volume=8&rft.issue=1&rft.spage=63&rft.epage=89&rft_id=info:doi/10.22105%2FJARIE.2021.238926.1180&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_706f5dcce4d4427a8b0af5d94f7c8dfc
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2538-5100&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2538-5100&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2538-5100&client=summon