Research on Abnormal Traffic Detection in Industrial Control Network Based on CVAE-CatBoost

For the detection of abnormal traffic in Industrial Control Network(ICN),a new abnormal traffic detection model based on Conditional Variational Autoencoder(CVAE) and the Categorical Features Gradient Boosting(CatBoost) algorithm is proposed to address the problems of unbalanced data distribution an...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Ji suan ji gong cheng Ročník 49; číslo 5; s. 173 - 180
Hlavný autor: ZHANG Zixuan, ZONG Xuejun, HE Kan, LIAN Lian
Médium: Journal Article
Jazyk:Chinese
English
Vydavateľské údaje: Editorial Office of Computer Engineering 01.05.2023
Predmet:
ISSN:1000-3428
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract For the detection of abnormal traffic in Industrial Control Network(ICN),a new abnormal traffic detection model based on Conditional Variational Autoencoder(CVAE) and the Categorical Features Gradient Boosting(CatBoost) algorithm is proposed to address the problems of unbalanced data distribution and low detection rate in existing models.CVAE uses label information as a constraint to control the category of generated samples.The CatBoost algorithm overcomes gradient bias by introducing unbiased estimation,improves prediction accuracy,and reduces risk of overfitting by adopting various tree growth modes.CVAE is used to enhance data,expand rare attack samples,and build balanced datasets with uniform distribution.The CatBoost algorithm is an anomaly traffic detection model which accurately identifies attack samples,such as Dos,Fuzzers,and outputs the classification results.The experimental results show that on the UNSW-NB15 dataset,after data enhancement using CVAE,CatBoost improves the F1 value by 25.16 percentage points on average,whereby the overall precision,recall,and F1 value,reach 87.85%,87.87%,and 87.86%,respectively;on the ZYELL_NCTU NetTraffic_1.0 dataset,after using CVAE to enhance the data,CatBoost improves the F1 value by 16.32% on average,and the overall precision,recall,and F1 value,reach 99.85%.The proposed model can effectively avoid data imbalance problems and has better detection performance and generalization ability than machine learning and deep learning algorithms,such as K-Nearest Neighbor(KNN),Random Forest(RF),and Convolution Neural Network(CNN).
AbstractList For the detection of abnormal traffic in Industrial Control Network(ICN),a new abnormal traffic detection model based on Conditional Variational Autoencoder(CVAE) and the Categorical Features Gradient Boosting(CatBoost) algorithm is proposed to address the problems of unbalanced data distribution and low detection rate in existing models.CVAE uses label information as a constraint to control the category of generated samples.The CatBoost algorithm overcomes gradient bias by introducing unbiased estimation,improves prediction accuracy,and reduces risk of overfitting by adopting various tree growth modes.CVAE is used to enhance data,expand rare attack samples,and build balanced datasets with uniform distribution.The CatBoost algorithm is an anomaly traffic detection model which accurately identifies attack samples,such as Dos,Fuzzers,and outputs the classification results.The experimental results show that on the UNSW-NB15 dataset,after data enhancement using CVAE,CatBoost improves the F1 value by 25.16 percentage points on average,whereby the overall precision,recall,and F1 value,reach 87.85%,87.87%,and 87.86%,respectively;on the ZYELL_NCTU NetTraffic_1.0 dataset,after using CVAE to enhance the data,CatBoost improves the F1 value by 16.32% on average,and the overall precision,recall,and F1 value,reach 99.85%.The proposed model can effectively avoid data imbalance problems and has better detection performance and generalization ability than machine learning and deep learning algorithms,such as K-Nearest Neighbor(KNN),Random Forest(RF),and Convolution Neural Network(CNN).
Author ZHANG Zixuan, ZONG Xuejun, HE Kan, LIAN Lian
Author_xml – sequence: 1
  fullname: ZHANG Zixuan, ZONG Xuejun, HE Kan, LIAN Lian
  organization: 1. School of Information Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China;2. Liaoning Province Petrochemical Industry Key Laboratory of Information Security, Shenyang 110142, China
BookMark eNo9jV1LwzAYRnMxwU39D_UHtKZNmrSXW506GAoyvfGivEneaGbXSBIR_731A68eOAfOsyCz0Y9IyHlJi7IVsrnYFy7GsSgppTnjVVNQKmoumxmZ_7NjsohxTymvKkrn5OkeI0LQL5kfs6UafTjAkO0CWOt0dokJdXKTcmO2Gc17TMFNvvNjCn7IbjF9-PCarSCi-S50j8t13kFaeR_TKTmyMEQ8-9sT8nC13nU3-fbuetMtt7kpmUi5sKgYbWTNmUA0bUlBMKaYUBxtrcoJWsmkrY0SFLXhRkumtaRKWcC2Zidk89s1Hvb9W3AHCJ-9B9f_AB-eewjJ6QF7xlspuKQg24prCaCtBonaTme2akr2BY0TZRw
ContentType Journal Article
DBID DOA
DOI 10.19678/j.issn.1000-3428.0065478
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 180
ExternalDocumentID oai_doaj_org_article_34976470a7924c7aacfca7ecf6b4f281
GroupedDBID -0Y
5XA
5XJ
92H
92I
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CUBFJ
CW9
GROUPED_DOAJ
TCJ
TGT
U1G
U5S
ID FETCH-LOGICAL-d136t-6feb30875436eed910a633b36b4ef5b16eef737f5db60ecd4dc73cc70bbfae953
IEDL.DBID DOA
ISSN 1000-3428
IngestDate Mon Nov 03 22:08:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language Chinese
English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d136t-6feb30875436eed910a633b36b4ef5b16eef737f5db60ecd4dc73cc70bbfae953
OpenAccessLink https://doaj.org/article/34976470a7924c7aacfca7ecf6b4f281
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_34976470a7924c7aacfca7ecf6b4f281
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Ji suan ji gong cheng
PublicationYear 2023
Publisher Editorial Office of Computer Engineering
Publisher_xml – name: Editorial Office of Computer Engineering
SSID ssj0042200
Score 2.2181373
Snippet For the detection of abnormal traffic in Industrial Control Network(ICN),a new abnormal traffic detection model based on Conditional Variational...
SourceID doaj
SourceType Open Website
StartPage 173
SubjectTerms industrial control network(icn)|anomaly detection|data imbalance|conditional variational autoencoder(cvae)|catboost algorithm
Title Research on Abnormal Traffic Detection in Industrial Control Network Based on CVAE-CatBoost
URI https://doaj.org/article/34976470a7924c7aacfca7ecf6b4f281
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1000-3428
  databaseCode: DOA
  dateStart: 20160101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0042200
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA0iInoQP_GbCF633SbZpD22tcWDFA8qBQ_L5Asqsivt6u93krTamxevWQhhZjNvBl7eI-SWB5sj6yCTPreZAMjxSjmeFZIr77BsSht1Zh_UZNKdTnuPa1ZfgROW5IFT4NpcIGAKlYPCScEoAOMNKGe81MKz-OiaYdezGqZSDRaM5UmHIMcqgx32NrmJL_OwNLff4vVq_XxrxQeWwWdtTbU_wst4n-wt-0LaT-c5IBuuOiS7a2qBR-R1xZKjdUX7ugrd5jtFsAkqEPTONZFVVdFZRX8NOegwcdHpJPG96QBhy4Ydhi_9UTaEZlDXi-aYPI9HT8P7bOmNkNkOlw2GFqfgoEYvuESYQ9AHybnmGBXnC93BRa8w3IXVMnfGCmsUN0blWntwvYKfkM2qrtwpodYzAKnBMg2iywSEKgkcNMNZg0txRgYhLuVHkr8ogyB1XMA0lcs0lX-l6fw_NrkgO8HtPfENL8lmM_90V2TLfDWzxfw6_gHfMze1Uw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Abnormal+Traffic+Detection+in+Industrial+Control+Network+Based+on+CVAE-CatBoost&rft.jtitle=Ji+suan+ji+gong+cheng&rft.au=ZHANG+Zixuan%2C+ZONG+Xuejun%2C+HE+Kan%2C+LIAN+Lian&rft.date=2023-05-01&rft.pub=Editorial+Office+of+Computer+Engineering&rft.issn=1000-3428&rft.volume=49&rft.issue=5&rft.spage=173&rft.epage=180&rft_id=info:doi/10.19678%2Fj.issn.1000-3428.0065478&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_34976470a7924c7aacfca7ecf6b4f281
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1000-3428&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1000-3428&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1000-3428&client=summon