GPU-Oriented Parallel Algorithm for Histogram Statistical Image Enhancement

Histogram statistics has important applications in the fields of image enhancement and target detection. However, with the increasing size of the image and the higher real-time requirements, the processing process of the histogram statistical local enhancement algorithm is slow and cannot reach the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Jisuanji kexue yu tansuo Ročník 16; číslo 10; s. 2273 - 2285
Hlavní autor: XIAO Han, SUN Lupeng, LI Cailin, ZHOU Qinglei
Médium: Journal Article
Jazyk:čínština
Vydáno: Journal of Computer Engineering and Applications Beijing Co., Ltd., Science Press 01.10.2022
Témata:
ISSN:1673-9418
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Histogram statistics has important applications in the fields of image enhancement and target detection. However, with the increasing size of the image and the higher real-time requirements, the processing process of the histogram statistical local enhancement algorithm is slow and cannot reach the expected satisfactory speed. In view of this deficiency, this paper realizes the parallel processing of histogram statistical image enhancement algorithm on graphics processing unit (GPU) platform, which improves the processing speed of large format digital images. Firstly, the efficiency of data access is improved by making full use of compute unified device architecture (CUDA) active thread block and active thread to process different sub-image blocks and pixels in parallel. Then, the paralle-lization of histogram statistical image enhancement algorithm on GPU platform is realized by using kernel configu-ration parameter optimization and data parallel computing technology. Finally, the efficient data transmission
ISSN:1673-9418
DOI:10.3778/j.issn.1673-9418.2103059