GPU-Oriented Parallel Algorithm for Histogram Statistical Image Enhancement

Histogram statistics has important applications in the fields of image enhancement and target detection. However, with the increasing size of the image and the higher real-time requirements, the processing process of the histogram statistical local enhancement algorithm is slow and cannot reach the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Jisuanji kexue yu tansuo Jg. 16; H. 10; S. 2273 - 2285
1. Verfasser: XIAO Han, SUN Lupeng, LI Cailin, ZHOU Qinglei
Format: Journal Article
Sprache:Chinesisch
Veröffentlicht: Journal of Computer Engineering and Applications Beijing Co., Ltd., Science Press 01.10.2022
Schlagworte:
ISSN:1673-9418
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Histogram statistics has important applications in the fields of image enhancement and target detection. However, with the increasing size of the image and the higher real-time requirements, the processing process of the histogram statistical local enhancement algorithm is slow and cannot reach the expected satisfactory speed. In view of this deficiency, this paper realizes the parallel processing of histogram statistical image enhancement algorithm on graphics processing unit (GPU) platform, which improves the processing speed of large format digital images. Firstly, the efficiency of data access is improved by making full use of compute unified device architecture (CUDA) active thread block and active thread to process different sub-image blocks and pixels in parallel. Then, the paralle-lization of histogram statistical image enhancement algorithm on GPU platform is realized by using kernel configu-ration parameter optimization and data parallel computing technology. Finally, the efficient data transmission
AbstractList Histogram statistics has important applications in the fields of image enhancement and target detection. However, with the increasing size of the image and the higher real-time requirements, the processing process of the histogram statistical local enhancement algorithm is slow and cannot reach the expected satisfactory speed. In view of this deficiency, this paper realizes the parallel processing of histogram statistical image enhancement algorithm on graphics processing unit (GPU) platform, which improves the processing speed of large format digital images. Firstly, the efficiency of data access is improved by making full use of compute unified device architecture (CUDA) active thread block and active thread to process different sub-image blocks and pixels in parallel. Then, the paralle-lization of histogram statistical image enhancement algorithm on GPU platform is realized by using kernel configu-ration parameter optimization and data parallel computing technology. Finally, the efficient data transmission
Author XIAO Han, SUN Lupeng, LI Cailin, ZHOU Qinglei
Author_xml – sequence: 1
  fullname: XIAO Han, SUN Lupeng, LI Cailin, ZHOU Qinglei
  organization: 1. School of Information Science and Technology, Zhengzhou Normal University, Zhengzhou 450044, China;2. School of Civil and Architectural Engineering, Shandong University of Technology, Zibo, Shandong 255000, China;3. School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China
BookMark eNo9jstOwzAUBb0oEqX0H_wDCX7G8bKqSltRqZWg6-jGj9SVEyMnG_6eCBCro5nF6DyhxZAGhxCmpORK1S_3MozjUNJK8UILWpeMEk6kXqDlv3tE63EMLZFCMKqqeone9pdrcc7BDZOz-AIZYnQRb2KXcphuPfYp40MYp9Rl6PH7BNMMwUDExx46h3fDDQbj-jnwjB48xNGt_3aFrq-7j-2hOJ33x-3mVFjKq6mgVrRWU0q51L71RnnhBFGgiGBGSK81U5poxSqjNBjmQbaa1sJLZSlhlq_Q8bdrE9ybzxx6yF9NgtD8iJS7BvL8MbpGes8tMaKqtRZOEc254LaqW82sFJbwb2wTXmk
ContentType Journal Article
DBID DOA
DOI 10.3778/j.issn.1673-9418.2103059
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EndPage 2285
ExternalDocumentID oai_doaj_org_article_5ff3d0c468994e7093343d68b92d54d0
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
M~E
ID FETCH-LOGICAL-d136t-1d4bd9111359fbfc7f4e407a7042c45f9927909726c79ac2fa5b9184f57d102d3
IEDL.DBID DOA
ISSN 1673-9418
IngestDate Fri Oct 03 12:29:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language Chinese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d136t-1d4bd9111359fbfc7f4e407a7042c45f9927909726c79ac2fa5b9184f57d102d3
OpenAccessLink https://doaj.org/article/5ff3d0c468994e7093343d68b92d54d0
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_5ff3d0c468994e7093343d68b92d54d0
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Jisuanji kexue yu tansuo
PublicationYear 2022
Publisher Journal of Computer Engineering and Applications Beijing Co., Ltd., Science Press
Publisher_xml – name: Journal of Computer Engineering and Applications Beijing Co., Ltd., Science Press
SSID ssib054421768
ssib002040941
ssib002423894
ssib051375751
ssib023646573
ssib036438069
ssib002040926
Score 2.315234
Snippet Histogram statistics has important applications in the fields of image enhancement and target detection. However, with the increasing size of the image and the...
SourceID doaj
SourceType Open Website
StartPage 2273
SubjectTerms histogram statistics|local enhancement|local mean|graphics processing unit (gpu)|compute unified device architecture (cuda)|parallel algorithm
Title GPU-Oriented Parallel Algorithm for Histogram Statistical Image Enhancement
URI https://doaj.org/article/5ff3d0c468994e7093343d68b92d54d0
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  issn: 1673-9418
  databaseCode: M~E
  dateStart: 20070101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: false
  ssIdentifier: ssib054421768
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQYmBBIEB8ywOr2yT-ikdALSCgdKCoWxTHMQXRFkWFgYHfzp1ThTCxsERyEp0U--x7zzm_I-TUJd7ayMWMG-6Z8EXJII47BpFKyVIo68M-5OOtHgzS8dgMW6W-MCeslgeuO64rvecuKoQCYiBKjQRccKdSaxInhQtsPdKmRaZC4AHfNG3gjG3x6wQnROrGE1FFXcmfQA5NnkaqCfQy5hp_UDRtIQDK1-fslOYMTKd1mhDXOu2-hAncaR51EizmhXKorboAIYD1N8nGEnnSs_qLt8jK52Sb3FwOR-wetY4BedJhXmFpFXjp9WlePS8mUwqYlgYpEczioghNg7IzGLqewlJEe7MJ-g3uMe6QUb_3cHHFlvUVmIu5WrDYCetwsePSeOsL7UUJ_C7XMJELIb0xiTYo76MKbfIi8bm0Bhihl9oBLnF8l6zO5rNyj9Aoj7kTqXAJmkAR-sg4ZYGLSABAUblPzvHLs7daQiNDUetwA4Y6Ww519tdQH_yHkUOynuAJhpCPd0RWF9V7eUzWig_ovuokeBFc7756348Tvr8
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GPU-Oriented+Parallel+Algorithm+for+Histogram+Statistical+Image+Enhancement&rft.jtitle=Jisuanji+kexue+yu+tansuo&rft.au=XIAO+Han%2C+SUN+Lupeng%2C+LI+Cailin%2C+ZHOU+Qinglei&rft.date=2022-10-01&rft.pub=Journal+of+Computer+Engineering+and+Applications+Beijing+Co.%2C+Ltd.%2C+Science+Press&rft.issn=1673-9418&rft.volume=16&rft.issue=10&rft.spage=2273&rft.epage=2285&rft_id=info:doi/10.3778%2Fj.issn.1673-9418.2103059&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5ff3d0c468994e7093343d68b92d54d0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1673-9418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1673-9418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1673-9418&client=summon