The Point Cloud Reduction Algorithm Based on the Feature Extraction of a Neighborhood Normal Vector and Fuzzy-c Means Clustering
The three-dimensional model of geographic elements serves as the primary medium for digital visualization. However, the original point cloud model is often vast and includes considerable redundant data, resulting in inefficiencies during the three-dimensional modeling process. To address this issue,...
Uložené v:
| Vydané v: | Proceedings Ročník 110; číslo 1; s. 13 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
MDPI AG
01.12.2024
|
| Predmet: | |
| ISSN: | 2504-3900 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The three-dimensional model of geographic elements serves as the primary medium for digital visualization. However, the original point cloud model is often vast and includes considerable redundant data, resulting in inefficiencies during the three-dimensional modeling process. To address this issue, this paper proposes a point cloud reduction algorithm that leverages domain normal vectors and fuzzy-c means (FCM) clustering for feature extraction. The algorithm first extracts the edge points of the model and then utilizes domain normal vectors to extract the overall feature points of the model. Next, utilizing point cloud curvature, coordinate information, and geometric attributes, the algorithm applies the FCM clustering method to isolate local feature points. Non-feature points are then sampled using an enhanced farthest point sampling technique. Finally, the algorithm integrates edge points, feature points, and non-feature points to generate simplified point cloud data. This paper compares the proposed algorithm with traditional methods, including the uniform grid method, random sampling method, and curvature sampling method, and evaluates the simplified point cloud in terms of reduction level and reconstruction time. This approach effectively preserves critical feature information from the majority of point cloud data, thereby addressing the complexities inherent in original point cloud models. |
|---|---|
| ISSN: | 2504-3900 |
| DOI: | 10.3390/proceedings2024110013 |