The Point Cloud Reduction Algorithm Based on the Feature Extraction of a Neighborhood Normal Vector and Fuzzy-c Means Clustering

The three-dimensional model of geographic elements serves as the primary medium for digital visualization. However, the original point cloud model is often vast and includes considerable redundant data, resulting in inefficiencies during the three-dimensional modeling process. To address this issue,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings Ročník 110; číslo 1; s. 13
Hlavní autori: Hongxiao Xu, Donglai Jiao, Wenmei Li
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: MDPI AG 01.12.2024
Predmet:
ISSN:2504-3900
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The three-dimensional model of geographic elements serves as the primary medium for digital visualization. However, the original point cloud model is often vast and includes considerable redundant data, resulting in inefficiencies during the three-dimensional modeling process. To address this issue, this paper proposes a point cloud reduction algorithm that leverages domain normal vectors and fuzzy-c means (FCM) clustering for feature extraction. The algorithm first extracts the edge points of the model and then utilizes domain normal vectors to extract the overall feature points of the model. Next, utilizing point cloud curvature, coordinate information, and geometric attributes, the algorithm applies the FCM clustering method to isolate local feature points. Non-feature points are then sampled using an enhanced farthest point sampling technique. Finally, the algorithm integrates edge points, feature points, and non-feature points to generate simplified point cloud data. This paper compares the proposed algorithm with traditional methods, including the uniform grid method, random sampling method, and curvature sampling method, and evaluates the simplified point cloud in terms of reduction level and reconstruction time. This approach effectively preserves critical feature information from the majority of point cloud data, thereby addressing the complexities inherent in original point cloud models.
AbstractList The three-dimensional model of geographic elements serves as the primary medium for digital visualization. However, the original point cloud model is often vast and includes considerable redundant data, resulting in inefficiencies during the three-dimensional modeling process. To address this issue, this paper proposes a point cloud reduction algorithm that leverages domain normal vectors and fuzzy-c means (FCM) clustering for feature extraction. The algorithm first extracts the edge points of the model and then utilizes domain normal vectors to extract the overall feature points of the model. Next, utilizing point cloud curvature, coordinate information, and geometric attributes, the algorithm applies the FCM clustering method to isolate local feature points. Non-feature points are then sampled using an enhanced farthest point sampling technique. Finally, the algorithm integrates edge points, feature points, and non-feature points to generate simplified point cloud data. This paper compares the proposed algorithm with traditional methods, including the uniform grid method, random sampling method, and curvature sampling method, and evaluates the simplified point cloud in terms of reduction level and reconstruction time. This approach effectively preserves critical feature information from the majority of point cloud data, thereby addressing the complexities inherent in original point cloud models.
Author Wenmei Li
Donglai Jiao
Hongxiao Xu
Author_xml – sequence: 1
  fullname: Hongxiao Xu
  organization: School of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
– sequence: 2
  fullname: Donglai Jiao
  organization: School of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
– sequence: 3
  fullname: Wenmei Li
  organization: School of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
BookMark eNotjt9KwzAchYMoOOceQcgLVJMmadPLOTYdzCkyvS3582ub0TUjTcHtyke3qFcHPj7OOTfosvMdIHRHyT1jBXk4Bm8ArOvqPiUpp5QQyi7QJBWEJ6NArtGs7_eEkDTPM8rlBH3vGsBv3nURL1o_WPwOdjDR-Q7P29oHF5sDflQ9WDyiOMorUHEIgJdfMag_01dY4S24utE-NN5bvPXhoFr8CSb6gFVn8Wo4n0-JwS-gun7cGvoIYXx6i64q1fYw-88p-lgtd4vnZPP6tF7MN4mllLEkFwqE0BaASa401VzqAqiGQiuppbbSiqwQqZAAhlqZV1aYPK3MKEhWUTZF679e69W-PAZ3UOFUeuXKX-BDXaoQnWmhlMAFLYQ1hGfcEqZzyKwyJGdZRoXJ2A-VKXNq
ContentType Journal Article
DBID DOA
DOI 10.3390/proceedings2024110013
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2504-3900
ExternalDocumentID oai_doaj_org_article_8e45195dc0464d03b7e6dac0736615c6
GroupedDBID AADQD
AAFWJ
ABDBF
ADBBV
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
GROUPED_DOAJ
M~E
ID FETCH-LOGICAL-d1133-75ae55bdee384ab1b48b9e1be9ba8b8bd8d5695258eec1d87fd5c72fce9b83f13
IEDL.DBID DOA
IngestDate Fri Oct 03 12:51:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d1133-75ae55bdee384ab1b48b9e1be9ba8b8bd8d5695258eec1d87fd5c72fce9b83f13
OpenAccessLink https://doaj.org/article/8e45195dc0464d03b7e6dac0736615c6
ParticipantIDs doaj_primary_oai_doaj_org_article_8e45195dc0464d03b7e6dac0736615c6
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Proceedings
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
SSID ssj0002776148
Score 2.2753778
Snippet The three-dimensional model of geographic elements serves as the primary medium for digital visualization. However, the original point cloud model is often...
SourceID doaj
SourceType Open Website
StartPage 13
SubjectTerms domain normal vector
edge point extraction
farthest point sampling
FCM clustering algorithm
point cloud reduction
Title The Point Cloud Reduction Algorithm Based on the Feature Extraction of a Neighborhood Normal Vector and Fuzzy-c Means Clustering
URI https://doaj.org/article/8e45195dc0464d03b7e6dac0736615c6
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  databaseCode: DOA
  dateStart: 20170101
  customDbUrl:
  isFulltext: true
  eissn: 2504-3900
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0002776148
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  databaseCode: M~E
  dateStart: 20170101
  customDbUrl:
  isFulltext: true
  eissn: 2504-3900
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: false
  ssIdentifier: ssj0002776148
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LS8NAEMcXKR68iKLimzl4DU26m2b32JYWD7YU0dJb2MdEKzWRthHtQfzoziYFe_PiJYclbJb5b5iZffyGsRty8UpaHgUodDsQGsNAcasDlwmZtYQRWNUhm9wlo5GcTtV4q9SXPxNW44FrwzUlVgAUZ_0enAu5SbDttKWZSZ4lthVsO0zUVjL1Um2nJZ5wWV_Z4ZTXN3_9wZLyfeFJab6kwRaov_IogwO2vwkFoVMP4ZDtYH7Evkk3GBezfAW9eVE6uPdsVW896MyfCkrln1-hS67HATVR9AY-iCsXCP2P1aK-pQBFBhpGftGTFPbcYhj50HQOk2qNHnTuYFCu15-BhSGSs6JvlZ6YQOM-Zo-D_kPvNthUSQhcRAlmkMSa7GkcIpdCm8gIaRRGBpXR0kjjpIvbKm7FEtFGTiaZi23Syiy9IHkW8RPWyIscTxm0dIicAgijuOeaSa3Q0T8f8Vg4G8XJGet6c6VvNQgj9WjqqoEESzeCpX8Jdv4fnVywPa9ifa7kkjVWixKv2K59X82Wi-tqLtBz-NX_AVM9vKI
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Point+Cloud+Reduction+Algorithm+Based+on+the+Feature+Extraction+of+a+Neighborhood+Normal+Vector+and+Fuzzy-c+Means+Clustering&rft.jtitle=Proceedings&rft.au=Hongxiao+Xu&rft.au=Donglai+Jiao&rft.au=Wenmei+Li&rft.date=2024-12-01&rft.pub=MDPI+AG&rft.eissn=2504-3900&rft.volume=110&rft.issue=1&rft.spage=13&rft_id=info:doi/10.3390%2Fproceedings2024110013&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8e45195dc0464d03b7e6dac0736615c6