Development of an effective clustering algorithm for older fallers
Falls are common and often lead to serious physical and psychological consequences for older persons. The occurrence of falls are usually attributed to the interaction between multiple risk factors. The clinical evaluation of falls risks is time-consuming as a result, hence limiting its availability...
Uložené v:
| Vydané v: | PloS one Ročník 17; číslo 11 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Public Library of Science (PLoS)
28.11.2022
|
| ISSN: | 1932-6203 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Falls are common and often lead to serious physical and psychological consequences for older persons. The occurrence of falls are usually attributed to the interaction between multiple risk factors. The clinical evaluation of falls risks is time-consuming as a result, hence limiting its availability. The purpose of this study was, therefore, to develop a clustering-based algorithm to determine falls risk. Data from the Malaysian Elders Longitudinal Research (MELoR), comprising 1411 subjects aged ≥55 years, were utilized. The proposed algorithm was developed through the stages of: data pre-processing, feature identification and extraction with either t-Distributed Stochastic Neighbour Embedding (t-SNE) or principal component analysis (PCA)), clustering (K-means clustering, Hierarchical clustering, and Fuzzy C-means clustering) and characteristics interpretation with statistical analysis. A total of 1279 subjects and 9 variables were selected for clustering after the data pre-possessing stage. Using feature extraction with the t-SNE and the K-means clustering algorithm, subjects were clustered into low, intermediate A, intermediate B and high fall risk groups which corresponded with fall occurrence of 13%, 19%, 21% and 31% respectively. Slower gait, poorer balance, weaker muscle strength, presence of cardiovascular disorder, poorer cognitive performance, and advancing age were the key variables identified. The proposed fall risk clustering algorithm grouped the subjects according to features. Such a tool could serve as a case identification or clinical decision support tool for clinical practice to enhance access to falls prevention efforts. |
|---|---|
| AbstractList | Falls are common and often lead to serious physical and psychological consequences for older persons. The occurrence of falls are usually attributed to the interaction between multiple risk factors. The clinical evaluation of falls risks is time-consuming as a result, hence limiting its availability. The purpose of this study was, therefore, to develop a clustering-based algorithm to determine falls risk. Data from the Malaysian Elders Longitudinal Research (MELoR), comprising 1411 subjects aged ≥55 years, were utilized. The proposed algorithm was developed through the stages of: data pre-processing, feature identification and extraction with either t-Distributed Stochastic Neighbour Embedding (t-SNE) or principal component analysis (PCA)), clustering (K-means clustering, Hierarchical clustering, and Fuzzy C-means clustering) and characteristics interpretation with statistical analysis. A total of 1279 subjects and 9 variables were selected for clustering after the data pre-possessing stage. Using feature extraction with the t-SNE and the K-means clustering algorithm, subjects were clustered into low, intermediate A, intermediate B and high fall risk groups which corresponded with fall occurrence of 13%, 19%, 21% and 31% respectively. Slower gait, poorer balance, weaker muscle strength, presence of cardiovascular disorder, poorer cognitive performance, and advancing age were the key variables identified. The proposed fall risk clustering algorithm grouped the subjects according to features. Such a tool could serve as a case identification or clinical decision support tool for clinical practice to enhance access to falls prevention efforts. |
| Author | Choon-Hian Goh Maw Pin Tan Siew-Cheok Ng Ban-Hoe Kwan Yea Dat Chuah Kam Kang Wong |
| Author_xml | – sequence: 1 fullname: Choon-Hian Goh – sequence: 2 fullname: Kam Kang Wong – sequence: 3 fullname: Maw Pin Tan – sequence: 4 fullname: Siew-Cheok Ng – sequence: 5 fullname: Yea Dat Chuah – sequence: 6 fullname: Ban-Hoe Kwan |
| BookMark | eNotjEtOwzAUAC0EEm3hBix8gRT7ObHjJZRfpUpsYB35815J5caVk1bi9lTAakazmDm7HPKAjN1JsZTKyPtdPpbBpeXhnJcCjLFaX7CZtAoqDUJds_k47oRoVKv1jD0-4QlTPuxxmHgm7gaORBim_oQ8pOM4YemHLXdpm0s_fe055cJzilg4uZSwjDfs6mwj3v5zwT5fnj9Wb9Xm_XW9ethUUQqQFRmhYwDX1kIBBFAko49eSgngg1WhJV-DbyyBsgY0eRRtaLV03rtaoFqw9d83ZrfrDqXfu_LdZdd3vyGXbefK1IeEHRmPNdnGNkbXWjc-tsqCt6Z2hlQU6gfKvlwY |
| ContentType | Journal Article |
| DBID | DOA |
| DOI | 10.1371/journal.pone.0277966 |
| DatabaseName | Directory of Open Access Journals |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (Open Access) url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1932-6203 |
| ExternalDocumentID | oai_doaj_org_article_f7be4f9595764665bd8392b974a7f3d0 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM |
| ID | FETCH-LOGICAL-d1021-f706dc2a840322c23f1dbdb11122bc93c8fb42b59f239726fbe08c861abba40e3 |
| IEDL.DBID | DOA |
| IngestDate | Fri Oct 03 12:43:03 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-d1021-f706dc2a840322c23f1dbdb11122bc93c8fb42b59f239726fbe08c861abba40e3 |
| OpenAccessLink | https://doaj.org/article/f7be4f9595764665bd8392b974a7f3d0 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f7be4f9595764665bd8392b974a7f3d0 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-28 |
| PublicationDateYYYYMMDD | 2022-11-28 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationTitle | PloS one |
| PublicationYear | 2022 |
| Publisher | Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science (PLoS) |
| SSID | ssj0053866 |
| Score | 2.4056957 |
| Snippet | Falls are common and often lead to serious physical and psychological consequences for older persons. The occurrence of falls are usually attributed to the... |
| SourceID | doaj |
| SourceType | Open Website |
| Title | Development of an effective clustering algorithm for older fallers |
| URI | https://doaj.org/article/f7be4f9595764665bd8392b974a7f3d0 |
| Volume | 17 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (Open Access) databaseCode: DOA dateStart: 20060101 customDbUrl: isFulltext: true eissn: 1932-6203 dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: false ssIdentifier: ssj0053866 providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources databaseCode: M~E dateStart: 20060101 customDbUrl: isFulltext: true eissn: 1932-6203 dateEnd: 99991231 titleUrlDefault: https://road.issn.org omitProxy: false ssIdentifier: ssj0053866 providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database databaseCode: P5Z dateStart: 20061201 customDbUrl: isFulltext: true eissn: 1932-6203 dateEnd: 99991231 titleUrlDefault: https://search.proquest.com/hightechjournals omitProxy: false ssIdentifier: ssj0053866 providerName: ProQuest – providerCode: PRVPQU databaseName: Agricultural Science Database databaseCode: M0K dateStart: 20061201 customDbUrl: isFulltext: true eissn: 1932-6203 dateEnd: 99991231 titleUrlDefault: https://search.proquest.com/agriculturejournals omitProxy: false ssIdentifier: ssj0053866 providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database databaseCode: M7P dateStart: 20061201 customDbUrl: isFulltext: true eissn: 1932-6203 dateEnd: 99991231 titleUrlDefault: http://search.proquest.com/biologicalscijournals omitProxy: false ssIdentifier: ssj0053866 providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database databaseCode: M7S dateStart: 20061201 customDbUrl: isFulltext: true eissn: 1932-6203 dateEnd: 99991231 titleUrlDefault: http://search.proquest.com omitProxy: false ssIdentifier: ssj0053866 providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database (subscripiton) databaseCode: PATMY dateStart: 20061201 customDbUrl: isFulltext: true eissn: 1932-6203 dateEnd: 99991231 titleUrlDefault: http://search.proquest.com/environmentalscience omitProxy: false ssIdentifier: ssj0053866 providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection databaseCode: 7X7 dateStart: 20061201 customDbUrl: isFulltext: true eissn: 1932-6203 dateEnd: 99991231 titleUrlDefault: https://search.proquest.com/healthcomplete omitProxy: false ssIdentifier: ssj0053866 providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database databaseCode: KB. dateStart: 20061201 customDbUrl: isFulltext: true eissn: 1932-6203 dateEnd: 99991231 titleUrlDefault: http://search.proquest.com/materialsscijournals omitProxy: false ssIdentifier: ssj0053866 providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database databaseCode: 7RV dateStart: 20061201 customDbUrl: isFulltext: true eissn: 1932-6203 dateEnd: 99991231 titleUrlDefault: https://search.proquest.com/nahs omitProxy: false ssIdentifier: ssj0053866 providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central databaseCode: BENPR dateStart: 20061201 customDbUrl: isFulltext: true eissn: 1932-6203 dateEnd: 99991231 titleUrlDefault: https://www.proquest.com/central omitProxy: false ssIdentifier: ssj0053866 providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content databaseCode: PIMPY dateStart: 20061201 customDbUrl: isFulltext: true eissn: 1932-6203 dateEnd: 99991231 titleUrlDefault: http://search.proquest.com/publiccontent omitProxy: false ssIdentifier: ssj0053866 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database databaseCode: 8C1 dateStart: 20061201 customDbUrl: isFulltext: true eissn: 1932-6203 dateEnd: 99991231 titleUrlDefault: https://search.proquest.com/publichealth omitProxy: false ssIdentifier: ssj0053866 providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science databaseCode: FPL dateStart: 20060101 customDbUrl: isFulltext: true eissn: 1932-6203 dateEnd: 99991231 titleUrlDefault: http://www.plos.org/publications/ omitProxy: false ssIdentifier: ssj0053866 providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxcCCKB_is_LAAEPaxHGceKSIiqlCAqRukc_2AVJJqn7w-zknQSoTC6sHW_HT3b1Tzu8xdq1TjJ2wKjLeqUimnvIgxM0UYZERvUeDsjGbyKfTYjbTT1tWX2EmrJUHbi9uhDl4iTrTRIylUhm4UNKBaLDJMXVNtx7n-qeZanMwRbFS3UO5NE9GHS7DRV35YfhrqdVvkf6mmkwO2H5HA_lde3yf7fjqkPW7QFvxm04N-vaIjbfGeniN3FS8ncGgNMXtfBOEDqj8cDN_q6nRf__kREN5Hcy3OQajlOXqmL1OHl7uH6PO-CBywWk7wjxWzgpDzRfFmxUpJg4cUFoSAqxObYEgBWQaBdEJoRB8XNhCJQbAyNinJ6xX0aeeMh5naLXVJglmNEIbkADUDcuc9i8ShDM2DrdQLlptizKoTTcLhEHZYVD-hcH5f2xywfZEeFqQJJEoLllvvdz4K7Zrv9Yfq-WggXcQJjOfvwG5wKx_ |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+an+effective+clustering+algorithm+for+older+fallers&rft.jtitle=PloS+one&rft.au=Choon-Hian+Goh&rft.au=Kam+Kang+Wong&rft.au=Maw+Pin+Tan&rft.au=Siew-Cheok+Ng&rft.date=2022-11-28&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.eissn=1932-6203&rft.volume=17&rft.issue=11&rft_id=info:doi/10.1371%2Fjournal.pone.0277966&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f7be4f9595764665bd8392b974a7f3d0 |