SPARE-Tau: A flortaucipir machine-learning derived early predictor of cognitive decline
BackgroundRecently, tau PET tracers have shown strong associations with clinical outcomes in individuals with cognitive impairment and cognitively unremarkable elderly individuals. flortaucipir PET scans to measure tau deposition in multiple brain areas as the disease progresses. This information ne...
Uloženo v:
| Vydáno v: | PloS one Ročník 17; číslo 11; s. e0276392 |
|---|---|
| Hlavní autoři: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Public Library of Science (PLoS)
03.11.2022
|
| ISSN: | 1932-6203 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | BackgroundRecently, tau PET tracers have shown strong associations with clinical outcomes in individuals with cognitive impairment and cognitively unremarkable elderly individuals. flortaucipir PET scans to measure tau deposition in multiple brain areas as the disease progresses. This information needs to be summarized to evaluate disease severity and predict disease progression. We, therefore, sought to develop a machine learning-derived index, SPARE-Tau, which successfully detects pathology in the earliest disease stages and accurately predicts progression compared to a priori-based region of interest approaches (ROI).Methods587 participants of the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort had flortaucipir scans, structural MRI scans, and an Aβ biomarker test (CSF or florbetapir PET) performed on the same visit. We derived the SPARE-Tau index in a subset of 367 participants. We evaluated associations with clinical measures for CSF p-tau, SPARE-MRI, and flortaucipir PET indices (SPARE-Tau, meta-temporal, and average Braak ROIs). Bootstrapped multivariate adaptive regression splines linear regression analyzed the association between the biomarkers and baseline ADAS-Cog13 scores. Bootstrapped multivariate linear regression models evaluated associations with clinical diagnosis. Cox-hazards and mixed-effects models investigated clinical progression and longitudinal ADAS-Cog13 changes. The Aβ positive cognitively unremarkable participants, not included in the SPARE-Tau training, served as an independent validation group.ResultsCompared to CSF p-tau, meta-temporal, and averaged Braak tau PET ROIs, SPARE-Tau showed the strongest association with baseline ADAS-cog13 scores and diagnosis. SPARE-Tau also presented the strongest association with clinical progression in cognitively unremarkable participants and longitudinal ADAS-Cog13 changes. Results were confirmed in the Aβ+ cognitively unremarkable hold-out sample participants. CSF p-tau showed the weakest cross-sectional associations and longitudinal prediction.DiscussionFlortaucipir indices showed the strongest clinical association among the studied biomarkers (flortaucipir, florbetapir, structural MRI, and CSF p-tau) and were predictive in the preclinical disease stages. Among the flortaucipir indices, the machine-learning derived SPARE-Tau index was the most sensitive clinical progression biomarker. The combination of different biomarker modalities better predicted cognitive performance. |
|---|---|
| AbstractList | BackgroundRecently, tau PET tracers have shown strong associations with clinical outcomes in individuals with cognitive impairment and cognitively unremarkable elderly individuals. flortaucipir PET scans to measure tau deposition in multiple brain areas as the disease progresses. This information needs to be summarized to evaluate disease severity and predict disease progression. We, therefore, sought to develop a machine learning-derived index, SPARE-Tau, which successfully detects pathology in the earliest disease stages and accurately predicts progression compared to a priori-based region of interest approaches (ROI).Methods587 participants of the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort had flortaucipir scans, structural MRI scans, and an Aβ biomarker test (CSF or florbetapir PET) performed on the same visit. We derived the SPARE-Tau index in a subset of 367 participants. We evaluated associations with clinical measures for CSF p-tau, SPARE-MRI, and flortaucipir PET indices (SPARE-Tau, meta-temporal, and average Braak ROIs). Bootstrapped multivariate adaptive regression splines linear regression analyzed the association between the biomarkers and baseline ADAS-Cog13 scores. Bootstrapped multivariate linear regression models evaluated associations with clinical diagnosis. Cox-hazards and mixed-effects models investigated clinical progression and longitudinal ADAS-Cog13 changes. The Aβ positive cognitively unremarkable participants, not included in the SPARE-Tau training, served as an independent validation group.ResultsCompared to CSF p-tau, meta-temporal, and averaged Braak tau PET ROIs, SPARE-Tau showed the strongest association with baseline ADAS-cog13 scores and diagnosis. SPARE-Tau also presented the strongest association with clinical progression in cognitively unremarkable participants and longitudinal ADAS-Cog13 changes. Results were confirmed in the Aβ+ cognitively unremarkable hold-out sample participants. CSF p-tau showed the weakest cross-sectional associations and longitudinal prediction.DiscussionFlortaucipir indices showed the strongest clinical association among the studied biomarkers (flortaucipir, florbetapir, structural MRI, and CSF p-tau) and were predictive in the preclinical disease stages. Among the flortaucipir indices, the machine-learning derived SPARE-Tau index was the most sensitive clinical progression biomarker. The combination of different biomarker modalities better predicted cognitive performance. |
| Author | Lenore Launer Sudha Seshadri Tanweer Rashid Leslie M Shaw Mohamad Habes Michael Weiner Jon B Toledo Susan R Heckbert Hangfan Liu Alzheimer’s Disease Neuroimaging Initiative |
| Author_xml | – sequence: 1 fullname: Jon B Toledo – sequence: 2 fullname: Tanweer Rashid – sequence: 3 fullname: Hangfan Liu – sequence: 4 fullname: Lenore Launer – sequence: 5 fullname: Leslie M Shaw – sequence: 6 fullname: Susan R Heckbert – sequence: 7 fullname: Michael Weiner – sequence: 8 fullname: Sudha Seshadri – sequence: 9 fullname: Mohamad Habes – sequence: 10 fullname: Alzheimer’s Disease Neuroimaging Initiative |
| BookMark | eNotjMtKAzEYhYMo2FbfwEVeYGouM7m4K6VqoaBoxeXwN_lTU6aTITMV-vYO6upwvnOZkss2tUjIHWdzLjW_P6RTbqGZdyOeM6GVtOKCTLiVolCCyWsy7fsDY5U0Sk3I5_vr4m1VbOH0QBc0NCkPcHKxi5kewX3FFosGIbex3VOPOX6jp6NvzrTL6KMbUqYpUJf2bRzGdCy5ZlzdkKsATY-3_zojH4-r7fK52Lw8rZeLTeE5E7wwpecKK6MlQ-MrBKMDRyGrYNFU1gbtrNVWeoXMeGGsA6wscKbcTiM6OSPrv1-f4FB3OR4hn-sEsf4FKe9ryEN0DdY-mHJnQTCneRkEN74MOwOlKoMW3ln5A_qEY4Q |
| ContentType | Journal Article |
| DBID | DOA |
| DOI | 10.1371/journal.pone.0276392 |
| DatabaseName | DOAJ Directory of Open Access Journals |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1932-6203 |
| ExternalDocumentID | oai_doaj_org_article_df84b9a20c714f218d4fb8a464f72dc9 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM |
| ID | FETCH-LOGICAL-d1021-84d16e58730e8d5ea87f1e235f9e8599f7c99793d6e08d289cae59a106cb7eec3 |
| IEDL.DBID | DOA |
| IngestDate | Fri Oct 03 12:43:08 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-d1021-84d16e58730e8d5ea87f1e235f9e8599f7c99793d6e08d289cae59a106cb7eec3 |
| OpenAccessLink | https://doaj.org/article/df84b9a20c714f218d4fb8a464f72dc9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_df84b9a20c714f218d4fb8a464f72dc9 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-03 |
| PublicationDateYYYYMMDD | 2022-11-03 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationTitle | PloS one |
| PublicationYear | 2022 |
| Publisher | Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science (PLoS) |
| SSID | ssj0053866 |
| Score | 2.4035761 |
| Snippet | BackgroundRecently, tau PET tracers have shown strong associations with clinical outcomes in individuals with cognitive impairment and cognitively unremarkable... |
| SourceID | doaj |
| SourceType | Open Website |
| StartPage | e0276392 |
| Title | SPARE-Tau: A flortaucipir machine-learning derived early predictor of cognitive decline |
| URI | https://doaj.org/article/df84b9a20c714f218d4fb8a464f72dc9 |
| Volume | 17 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals databaseCode: DOA dateStart: 20060101 customDbUrl: isFulltext: true eissn: 1932-6203 dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: false ssIdentifier: ssj0053866 providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources databaseCode: M~E dateStart: 20060101 customDbUrl: isFulltext: true eissn: 1932-6203 dateEnd: 99991231 titleUrlDefault: https://road.issn.org omitProxy: false ssIdentifier: ssj0053866 providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database databaseCode: P5Z dateStart: 20061201 customDbUrl: isFulltext: true eissn: 1932-6203 dateEnd: 99991231 titleUrlDefault: https://search.proquest.com/hightechjournals omitProxy: false ssIdentifier: ssj0053866 providerName: ProQuest – providerCode: PRVPQU databaseName: Agricultural Science Database databaseCode: M0K dateStart: 20061201 customDbUrl: isFulltext: true eissn: 1932-6203 dateEnd: 99991231 titleUrlDefault: https://search.proquest.com/agriculturejournals omitProxy: false ssIdentifier: ssj0053866 providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database databaseCode: M7P dateStart: 20061201 customDbUrl: isFulltext: true eissn: 1932-6203 dateEnd: 99991231 titleUrlDefault: http://search.proquest.com/biologicalscijournals omitProxy: false ssIdentifier: ssj0053866 providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database databaseCode: M7S dateStart: 20061201 customDbUrl: isFulltext: true eissn: 1932-6203 dateEnd: 99991231 titleUrlDefault: http://search.proquest.com omitProxy: false ssIdentifier: ssj0053866 providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database databaseCode: PATMY dateStart: 20061201 customDbUrl: isFulltext: true eissn: 1932-6203 dateEnd: 99991231 titleUrlDefault: http://search.proquest.com/environmentalscience omitProxy: false ssIdentifier: ssj0053866 providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection databaseCode: 7X7 dateStart: 20061201 customDbUrl: isFulltext: true eissn: 1932-6203 dateEnd: 99991231 titleUrlDefault: https://search.proquest.com/healthcomplete omitProxy: false ssIdentifier: ssj0053866 providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database databaseCode: KB. dateStart: 20061201 customDbUrl: isFulltext: true eissn: 1932-6203 dateEnd: 99991231 titleUrlDefault: http://search.proquest.com/materialsscijournals omitProxy: false ssIdentifier: ssj0053866 providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database databaseCode: 7RV dateStart: 20061201 customDbUrl: isFulltext: true eissn: 1932-6203 dateEnd: 99991231 titleUrlDefault: https://search.proquest.com/nahs omitProxy: false ssIdentifier: ssj0053866 providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central databaseCode: BENPR dateStart: 20061201 customDbUrl: isFulltext: true eissn: 1932-6203 dateEnd: 99991231 titleUrlDefault: https://www.proquest.com/central omitProxy: false ssIdentifier: ssj0053866 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database databaseCode: 8C1 dateStart: 20061201 customDbUrl: isFulltext: true eissn: 1932-6203 dateEnd: 99991231 titleUrlDefault: https://search.proquest.com/publichealth omitProxy: false ssIdentifier: ssj0053866 providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database databaseCode: PIMPY dateStart: 20061201 customDbUrl: isFulltext: true eissn: 1932-6203 dateEnd: 99991231 titleUrlDefault: http://search.proquest.com/publiccontent omitProxy: false ssIdentifier: ssj0053866 providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access databaseCode: FPL dateStart: 20060101 customDbUrl: isFulltext: true eissn: 1932-6203 dateEnd: 99991231 titleUrlDefault: http://www.plos.org/publications/ omitProxy: false ssIdentifier: ssj0053866 providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQYWBBlId4Vh4YYHDbxE5ssxXUiqmqShHdIse-Q5WgrdLH78dOAoKJBSmTFcXKfTmfv_juO0JuILLATY6Mo-FMRDZmBh0y7YeVznU31aZsNiGHQzWd6tGPVl8hJ6ySB64M13GoRK5N3LUyEugDkhOYKyNSgTJ2tizd60r9RaaqNdh7cZrWhXJcRp0al_ZyMYe2J2I-LMe_RPrLaDI4JAf1NpD2qumbZAfmR6RZO9qK3tZq0HfH5PV51Bv32cRs7mmP4nvYLm_sbDkr6EeZCAms7vzwRp3_nLbgKATVYroswiGM59R0gfQ7TcjfFKoh4YS8DPqTxydWd0NgLrTfZkq4KIVEeZcE5RIwSmIEMU9Qg0q0Rmm19t7mUugq53mUNZBo4ymfzSWA5aekMffvf0aot6Oz0ljDOQrHjfaXs4g8ztNUKDwnD8E02bISvMiCBHU54IHJamCyv4C5-I-HXJL9ONQbhP-4_Io01sUGrsme3a5nq6JFdh_6w9G4VWL_CfC2t1E |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SPARE-Tau%3A+A+flortaucipir+machine-learning+derived+early+predictor+of+cognitive+decline&rft.jtitle=PloS+one&rft.au=Jon+B+Toledo&rft.au=Tanweer+Rashid&rft.au=Hangfan+Liu&rft.au=Lenore+Launer&rft.date=2022-11-03&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.eissn=1932-6203&rft.volume=17&rft.issue=11&rft.spage=e0276392&rft_id=info:doi/10.1371%2Fjournal.pone.0276392&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_df84b9a20c714f218d4fb8a464f72dc9 |