Graph-based learning for sleep microarchitecture: a hybrid graph autoencoder and graph attention network approach
Background: Sleep plays a vital role in cognitive function, memory consolidation, and overall neurological health. Analysis of sleep microarchitecture including features such as sleep spindles, K-complexes, slow waves, and EEG bandpower components provides critical insights into sleep disorders and...
Uložené v:
| Vydané v: | International journal of research in medical sciences Ročník 13; číslo 11; s. 4696 - 4702 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
30.10.2025
|
| ISSN: | 2320-6071, 2320-6012 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Background: Sleep plays a vital role in cognitive function, memory consolidation, and overall neurological health. Analysis of sleep microarchitecture including features such as sleep spindles, K-complexes, slow waves, and EEG bandpower components provides critical insights into sleep disorders and genetic diseases. However, the complex interactions between sleep architecture and underlying genetic abnormalities remain underexplored. This study aims to investigate these interactions by leveraging advanced graph-based deep learning methods to uncover hidden relationships within EEG signals. Methods: We developed a graph autoencoder (GAE) combined with a Graph attention network (GAT) to analyze polysomnography (PSG) data from the National Children's Hospital (NCH) dataset. EEG epochs were modelled as graph nodes, while edges were constructed based on bandpower similarity between epochs, enabling dynamic representation of sleep activity. The GAE learned latent embeddings that capture subtle patterns in sleep microarchitecture, and the GAT applied attention mechanisms to classify and interpret relationships between EEG events, sleep disorders, and genetic abnormalities. Three core analyses were conducted: (1) identifying differences in sleep microarchitecture across sleep disorders, (2) detecting EEG event changes associated with genetic disorders, and (3) exploring shared patterns linking sleep and genetic abnormalities. Results: The model achieved classification accuracies of 92.4%, 91.2%, and 88.6% across the three tasks, respectively. The approach successfully identified distinct EEG event patterns in subjects with co-occurring sleep disorders. Conclusions: This work presents a scalable, automated, and interpretable framework for analyzing the interplay between sleep microarchitecture, sleep disorders, and genetic disorders. |
|---|---|
| AbstractList | Background: Sleep plays a vital role in cognitive function, memory consolidation, and overall neurological health. Analysis of sleep microarchitecture including features such as sleep spindles, K-complexes, slow waves, and EEG bandpower components provides critical insights into sleep disorders and genetic diseases. However, the complex interactions between sleep architecture and underlying genetic abnormalities remain underexplored. This study aims to investigate these interactions by leveraging advanced graph-based deep learning methods to uncover hidden relationships within EEG signals. Methods: We developed a graph autoencoder (GAE) combined with a Graph attention network (GAT) to analyze polysomnography (PSG) data from the National Children's Hospital (NCH) dataset. EEG epochs were modelled as graph nodes, while edges were constructed based on bandpower similarity between epochs, enabling dynamic representation of sleep activity. The GAE learned latent embeddings that capture subtle patterns in sleep microarchitecture, and the GAT applied attention mechanisms to classify and interpret relationships between EEG events, sleep disorders, and genetic abnormalities. Three core analyses were conducted: (1) identifying differences in sleep microarchitecture across sleep disorders, (2) detecting EEG event changes associated with genetic disorders, and (3) exploring shared patterns linking sleep and genetic abnormalities. Results: The model achieved classification accuracies of 92.4%, 91.2%, and 88.6% across the three tasks, respectively. The approach successfully identified distinct EEG event patterns in subjects with co-occurring sleep disorders. Conclusions: This work presents a scalable, automated, and interpretable framework for analyzing the interplay between sleep microarchitecture, sleep disorders, and genetic disorders. |
| Author | Vaidhehi Kurisinkal Augustine, Amala Ann |
| Author_xml | – sequence: 1 givenname: Amala Ann surname: Kurisinkal Augustine fullname: Kurisinkal Augustine, Amala Ann – sequence: 2 surname: Vaidhehi fullname: Vaidhehi |
| BookMark | eNpVkNFKAzEQRYMoWGv_IT-wNZnsbja-SdEqFHzp-5JNZrupbbImKdK_t1Up-DTDXO5hOHfk2gePhFDO5rwBJh5AACtqxmHutnGfgEElqkZekcklub7skt-SWUpbxhgXJVelmpDPZdTjUHQ6oaU71NE7v6F9iDTtEEe6dyYGHc3gMpp8iPhINR2OXXSWbs5Vqg85oDfBYqTaX645o88ueOoxf4X4QfU4nkhmuCc3vd4lnP3NKVm_PK8Xr8Xqffm2eFoVRilZVAqF1bKrjQJbaqs0B9bUArqy6sEqVldKgOGslmUFYHsUUoCVWHPNG6zFlDS_2NP_KUXs2zG6vY7HlrP2R1571tKeFbX_5Ilv9XdndQ |
| Cites_doi | 10.1007/s11910-019-0968-1 10.1093/sleep/zsac079.656 10.1109/TNSRE.2024.3355750 10.21608/cjmss.2024.290167.1053 10.1016/j.biopsycho.2007.01.004 10.1111/j.1439-054X.2006.00101.x 10.23919/JSC.2023.0018 10.1016/j.heliyon.2025.e43576 10.1093/jamia/ocy064 10.3390/s22083079 10.1093/sleepadvances/zpac029.002 10.3389/fpsyt.2023.1115374 10.1016/j.sleep.2019.01.050 10.1186/s13643-024-02449-9 10.5815/ijisa.2015.06.05 10.1093/sleep/zsad077.0907 10.1109/BigData62323.2024.10825687 10.1101/2024.12.11.24318815 10.1016/j.cell.2011.07.004 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.18203/2320-6012.ijrms20253587 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2320-6012 |
| EndPage | 4702 |
| ExternalDocumentID | 10_18203_2320_6012_ijrms20253587 |
| GroupedDBID | 5VS AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION KQ8 M~E RNS |
| ID | FETCH-LOGICAL-c997-59e3da7b6c92d4ad9a1208632b45f2d9065932c10674522dfe3732d7e61a18e63 |
| ISSN | 2320-6071 |
| IngestDate | Wed Nov 05 20:41:28 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c997-59e3da7b6c92d4ad9a1208632b45f2d9065932c10674522dfe3732d7e61a18e63 |
| OpenAccessLink | https://www.msjonline.org/index.php/ijrms/article/download/15584/10019 |
| PageCount | 7 |
| ParticipantIDs | crossref_primary_10_18203_2320_6012_ijrms20253587 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-30 |
| PublicationDateYYYYMMDD | 2025-10-30 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of research in medical sciences |
| PublicationYear | 2025 |
| References | 383060 383050 383061 383051 383062 383052 383063 383046 383057 383047 383058 383048 383059 383049 383053 383064 383054 383065 383055 383066 383056 383067 |
| References_xml | – ident: 383054 doi: 10.1007/s11910-019-0968-1 – ident: 383050 doi: 10.1093/sleep/zsac079.656 – ident: 383067 doi: 10.1109/TNSRE.2024.3355750 – ident: 383049 doi: 10.21608/cjmss.2024.290167.1053 – ident: 383056 doi: 10.1016/j.biopsycho.2007.01.004 – ident: 383065 doi: 10.1111/j.1439-054X.2006.00101.x – ident: 383058 doi: 10.23919/JSC.2023.0018 – ident: 383046 doi: 10.1016/j.heliyon.2025.e43576 – ident: 383062 doi: 10.1093/jamia/ocy064 – ident: 383057 – ident: 383059 – ident: 383066 doi: 10.3390/s22083079 – ident: 383051 doi: 10.1093/sleepadvances/zpac029.002 – ident: 383060 doi: 10.3389/fpsyt.2023.1115374 – ident: 383053 doi: 10.1016/j.sleep.2019.01.050 – ident: 383048 doi: 10.1186/s13643-024-02449-9 – ident: 383055 doi: 10.5815/ijisa.2015.06.05 – ident: 383052 doi: 10.1093/sleep/zsad077.0907 – ident: 383047 doi: 10.1109/BigData62323.2024.10825687 – ident: 383063 – ident: 383061 doi: 10.1101/2024.12.11.24318815 – ident: 383064 doi: 10.1016/j.cell.2011.07.004 |
| SSID | ssj0001341949 |
| Score | 2.307803 |
| Snippet | Background: Sleep plays a vital role in cognitive function, memory consolidation, and overall neurological health. Analysis of sleep microarchitecture... |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 4696 |
| Title | Graph-based learning for sleep microarchitecture: a hybrid graph autoencoder and graph attention network approach |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2320-6012 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001341949 issn: 2320-6071 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZCi1AviPJQebTyobdoobb3ZW4VovTSqocI9bay114SlGxDsqnaCz-OX8aM17t4qRAPicsqspTRJvNp3vOZkEOp88SYzOJ2u4liFutIHyU6guBDKaFxm1K5yyay8_P88lJejEbful2Y63lW1_nNjVz-V1XDGSgbV2f_Qt29UDiAz6B0eILa4flHiv-AFNQReifT3QnRzkqu59YuxwucwAvbB-268_QWV7fGjr96rDbNFRJcIs8EFtb9adP42ci6nR3vCcnDCHdYYgyIKTytkKuwLHx7yPvfQUNpDdkx4mbzCS8a8wXXhZqr8XHdI_mjmpmpnc7CogV3ZKe-_-JsG8fFbaS2a91QeMaGxlmEIGSBqYW8Pg3cdpy5ze27LgFCHOSm6KW_nn1eLdb4UiLxvn7Awv2Td-xnFjFbQlkFSipQUjGQdI9s8yyRaFnPvgZ1PiTMc1lY_5v9QBkKe_OL1wqipCDcmTwiD32eQo9bfO2Ska0fkwdnfhLjCfkSwIx2MKMAM-pgRu_A7C1VtAUZdXCiAcgogKw77UBGPchoB7KnZHLyfvLuNPLXd0QlUvwm0gqjMp2WkptYGakYh_xZcB0nFTcSG_qCl0hhiKz-prIiExzMRsoUy20qnpGt-qq2e4SaLE9ZldujUtpY5VqmNoG4m2lZmURX9jlh3b9VLFuSluJ36nrxD995SXZ-gPkV2WpWG7tP7pfXzWy9OnB6_w7fEZC9 |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph-based+learning+for+sleep+microarchitecture%3A+a+hybrid+graph+autoencoder+and+graph+attention+network+approach&rft.jtitle=International+journal+of+research+in+medical+sciences&rft.au=Kurisinkal+Augustine%2C+Amala+Ann&rft.au=Vaidhehi&rft.date=2025-10-30&rft.issn=2320-6071&rft.eissn=2320-6012&rft.volume=13&rft.issue=11&rft.spage=4696&rft.epage=4702&rft_id=info:doi/10.18203%2F2320-6012.ijrms20253587&rft.externalDBID=n%2Fa&rft.externalDocID=10_18203_2320_6012_ijrms20253587 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2320-6071&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2320-6071&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2320-6071&client=summon |