Target image validation modeling using deep neural network algorithm
Research on image validation models is an interesting topic. The application of deep learning (DL) for object detection has been demonstrated to effectively and efficiently address the challenges in this field. Deep neural networks (DNN) are deep learning algorithms capable of handling large dataset...
Gespeichert in:
| Veröffentlicht in: | International journal of electrical and computer engineering (Malacca, Malacca) Jg. 15; H. 2; S. 2042 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
01.04.2025
|
| ISSN: | 2088-8708, 2722-2578 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Research on image validation models is an interesting topic. The application of deep learning (DL) for object detection has been demonstrated to effectively and efficiently address the challenges in this field. Deep neural networks (DNN) are deep learning algorithms capable of handling large datasets and effectively solving complex problems due to their robust learning capacity. Despite their ability to address complex problems, DNN encounter challenges related to the necessity for intricate architectures and a large number of hidden layers. The objective of this research is to identify the most effective model for achieving optimal performance in image validation. This study investigates target image validation using DNN algorithms, examining architectures with 3, 4, 5, and 6 hidden layers. This study also evaluates the performance of image validation across various activation functions, batch sizes, and numbers of neurons. The results of the study show that the best performance for image validation is achieved using the Leaky-ReLU and Sigmoid activation functions, with a batch size of 64, and an architecture consisting of 3 hidden layers with neuron sizes of 256, 128, and 64. This model is capable of providing real-time target image validation with an accuracy of up to 94.31%. |
|---|---|
| AbstractList | Research on image validation models is an interesting topic. The application of deep learning (DL) for object detection has been demonstrated to effectively and efficiently address the challenges in this field. Deep neural networks (DNN) are deep learning algorithms capable of handling large datasets and effectively solving complex problems due to their robust learning capacity. Despite their ability to address complex problems, DNN encounter challenges related to the necessity for intricate architectures and a large number of hidden layers. The objective of this research is to identify the most effective model for achieving optimal performance in image validation. This study investigates target image validation using DNN algorithms, examining architectures with 3, 4, 5, and 6 hidden layers. This study also evaluates the performance of image validation across various activation functions, batch sizes, and numbers of neurons. The results of the study show that the best performance for image validation is achieved using the Leaky-ReLU and Sigmoid activation functions, with a batch size of 64, and an architecture consisting of 3 hidden layers with neuron sizes of 256, 128, and 64. This model is capable of providing real-time target image validation with an accuracy of up to 94.31%. |
| Author | Fahmi, Fahmi Efendi, Syahril Mubarakah, Naemah Sihombing, Poltak |
| Author_xml | – sequence: 1 givenname: Naemah orcidid: 0000-0002-5832-5057 surname: Mubarakah fullname: Mubarakah, Naemah – sequence: 2 givenname: Poltak orcidid: 0000-0001-5348-4537 surname: Sihombing fullname: Sihombing, Poltak – sequence: 3 givenname: Syahril orcidid: 0000-0002-3944-5459 surname: Efendi fullname: Efendi, Syahril – sequence: 4 givenname: Fahmi orcidid: 0000-0002-6760-4824 surname: Fahmi fullname: Fahmi, Fahmi |
| BookMark | eNot0MtOwzAQBVALFYlS-g_-gYSxM0nsJSpPqRKb7C07toMhLzlpEX9P-tjMvaur0bknq37oHSGUQcpYLtlj-Ha1S48sDzwdRw7IEw453pA1L_nS81Kslg5CJKIEcUe20xQMIJYIZZGvyXOlY-NmGjrdOHrUbbB6DkNPu8G6NvQNPUyna50bae8OUbdLzL9D_KG6bYYY5q_ugdx63U5ue80NqV5fqt17sv98-9g97ZNaSkwyYaRBwQ2zEqEQDo1nptBYlLUHD9xIYTwWBmvGMbcgDErvLaDRYI3NNkRcZus4TFN0Xo1x-Tv-KQbq7KHOHursoS4e6uSR_QP5vVnf |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.11591/ijece.v15i2.pp2042-2054 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2722-2578 |
| ExternalDocumentID | 10_11591_ijece_v15i2_pp2042_2054 |
| GroupedDBID | .4S .DC 8FE 8FG AAKDD AAYXX ABJCF ABUWG AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BENPR BGLVJ BPHCQ BVBZV CCPQU CITATION EOJEC HCIFZ I-F K6V K7- KWQ L6V M7S OBODZ OK1 P62 PHGZM PHGZT PQGLB PQQKQ PROAC PTHSS TUS |
| ID | FETCH-LOGICAL-c994-38b9b482b1d94068e4bf1b6a467cf0f02b98bf46b4c1245d08b49ffd04ba0dbd3 |
| ISSN | 2088-8708 |
| IngestDate | Sat Nov 29 02:39:50 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | http://creativecommons.org/licenses/by-sa/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c994-38b9b482b1d94068e4bf1b6a467cf0f02b98bf46b4c1245d08b49ffd04ba0dbd3 |
| ORCID | 0000-0002-5832-5057 0000-0001-5348-4537 0000-0002-3944-5459 0000-0002-6760-4824 |
| OpenAccessLink | https://doi.org/10.11591/ijece.v15i2.pp2042-2054 |
| ParticipantIDs | crossref_primary_10_11591_ijece_v15i2_pp2042_2054 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-01 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of electrical and computer engineering (Malacca, Malacca) |
| PublicationYear | 2025 |
| SSID | ssib044740765 ssj0000866295 |
| Score | 2.3053603 |
| Snippet | Research on image validation models is an interesting topic. The application of deep learning (DL) for object detection has been demonstrated to effectively... |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 2042 |
| Title | Target image validation modeling using deep neural network algorithm |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2722-2578 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044740765 issn: 2088-8708 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2722-2578 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000866295 issn: 2088-8708 databaseCode: P5Z dateStart: 20110901 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2722-2578 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000866295 issn: 2088-8708 databaseCode: K7- dateStart: 20110901 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: East & South Asia Database customDbUrl: eissn: 2722-2578 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000866295 issn: 2088-8708 databaseCode: BVBZV dateStart: 20110901 isFulltext: true titleUrlDefault: https://search.proquest.com/eastsouthasia providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2722-2578 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000866295 issn: 2088-8708 databaseCode: M7S dateStart: 20110901 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2722-2578 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000866295 issn: 2088-8708 databaseCode: BENPR dateStart: 20110901 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKwgEOiKd4ywduVZbEdRL7iKArLqxW2h72FvlJAk0alW61XPiL_CXGdl4FIR4Sl8hylFHa79PMeDIPhF4ujDGSZ2nENLcRTZIsEkqzSIGt1LkmiZXMD5vIT0_ZxQU_m82-9bUw-3XeNOzqirf_FWrYA7Bd6exfwD0IhQ1YA-hwBdjh-mfA-9zueVW7bBwQXIWpSWHmjQsMXPrwgDamnbtuloBRE3LB52L9YbOtdmU9dVkPY4aTThNhgs7QbUB18yHmZmxx6PzX92ItAMBQGNQt-Yiz-9rxSZRB05t6DE-fV-Wmlt3IlbPNeieGoqKlNY32aQjnX0S5HbNETkRZ-32_mEY0SDpJhPGKj4DmAy0dB71swl4Oh2anXg40dzphKJmq4Ti07PrZPqTcGYjqo1HmeJ-kFTluW-JLlOLQzPqwJfcPpnJIYPRHJ5BVeEmFl1QESYWTdA1dJzncd7mkX5e9gqM0h_Nz91nZuwosy4ifDDT85j7bDB5-9YvXnLhQE19odQfd7g4x-HUg3100M809dGvS2vI-ehtoiD0N8UhD3NMQexpiR0McaIg7GuKBhg_Q6mS5evMu6iZ2RMq1mF4wySVlRCaag6PIDJU2kZkAY6xsbGMiOZOWZpIqcCtTHTNJubU6plLEWurFQ3TUbBrzCGEqbKpJxp2KoVQwlkmZq1RJ8KcXqUgfo6T_D4o29GUpfgfKk3945im6OVL0GTrabS_Nc3RD7XfV5-0Lj-53NtaNbQ |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Target+image+validation+modeling+using+deep+neural+network+algorithm&rft.jtitle=International+journal+of+electrical+and+computer+engineering+%28Malacca%2C+Malacca%29&rft.au=Mubarakah%2C+Naemah&rft.au=Sihombing%2C+Poltak&rft.au=Efendi%2C+Syahril&rft.au=Fahmi%2C+Fahmi&rft.date=2025-04-01&rft.issn=2088-8708&rft.eissn=2722-2578&rft.volume=15&rft.issue=2&rft.spage=2042&rft_id=info:doi/10.11591%2Fijece.v15i2.pp2042-2054&rft.externalDBID=n%2Fa&rft.externalDocID=10_11591_ijece_v15i2_pp2042_2054 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2088-8708&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2088-8708&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2088-8708&client=summon |