Target image validation modeling using deep neural network algorithm

Research on image validation models is an interesting topic. The application of deep learning (DL) for object detection has been demonstrated to effectively and efficiently address the challenges in this field. Deep neural networks (DNN) are deep learning algorithms capable of handling large dataset...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of electrical and computer engineering (Malacca, Malacca) Jg. 15; H. 2; S. 2042
Hauptverfasser: Mubarakah, Naemah, Sihombing, Poltak, Efendi, Syahril, Fahmi, Fahmi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 01.04.2025
ISSN:2088-8708, 2722-2578
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Research on image validation models is an interesting topic. The application of deep learning (DL) for object detection has been demonstrated to effectively and efficiently address the challenges in this field. Deep neural networks (DNN) are deep learning algorithms capable of handling large datasets and effectively solving complex problems due to their robust learning capacity. Despite their ability to address complex problems, DNN encounter challenges related to the necessity for intricate architectures and a large number of hidden layers. The objective of this research is to identify the most effective model for achieving optimal performance in image validation. This study investigates target image validation using DNN algorithms, examining architectures with 3, 4, 5, and 6 hidden layers. This study also evaluates the performance of image validation across various activation functions, batch sizes, and numbers of neurons. The results of the study show that the best performance for image validation is achieved using the Leaky-ReLU and Sigmoid activation functions, with a batch size of 64, and an architecture consisting of 3 hidden layers with neuron sizes of 256, 128, and 64. This model is capable of providing real-time target image validation with an accuracy of up to 94.31%.
AbstractList Research on image validation models is an interesting topic. The application of deep learning (DL) for object detection has been demonstrated to effectively and efficiently address the challenges in this field. Deep neural networks (DNN) are deep learning algorithms capable of handling large datasets and effectively solving complex problems due to their robust learning capacity. Despite their ability to address complex problems, DNN encounter challenges related to the necessity for intricate architectures and a large number of hidden layers. The objective of this research is to identify the most effective model for achieving optimal performance in image validation. This study investigates target image validation using DNN algorithms, examining architectures with 3, 4, 5, and 6 hidden layers. This study also evaluates the performance of image validation across various activation functions, batch sizes, and numbers of neurons. The results of the study show that the best performance for image validation is achieved using the Leaky-ReLU and Sigmoid activation functions, with a batch size of 64, and an architecture consisting of 3 hidden layers with neuron sizes of 256, 128, and 64. This model is capable of providing real-time target image validation with an accuracy of up to 94.31%.
Author Fahmi, Fahmi
Efendi, Syahril
Mubarakah, Naemah
Sihombing, Poltak
Author_xml – sequence: 1
  givenname: Naemah
  orcidid: 0000-0002-5832-5057
  surname: Mubarakah
  fullname: Mubarakah, Naemah
– sequence: 2
  givenname: Poltak
  orcidid: 0000-0001-5348-4537
  surname: Sihombing
  fullname: Sihombing, Poltak
– sequence: 3
  givenname: Syahril
  orcidid: 0000-0002-3944-5459
  surname: Efendi
  fullname: Efendi, Syahril
– sequence: 4
  givenname: Fahmi
  orcidid: 0000-0002-6760-4824
  surname: Fahmi
  fullname: Fahmi, Fahmi
BookMark eNot0MtOwzAQBVALFYlS-g_-gYSxM0nsJSpPqRKb7C07toMhLzlpEX9P-tjMvaur0bknq37oHSGUQcpYLtlj-Ha1S48sDzwdRw7IEw453pA1L_nS81Kslg5CJKIEcUe20xQMIJYIZZGvyXOlY-NmGjrdOHrUbbB6DkNPu8G6NvQNPUyna50bae8OUbdLzL9D_KG6bYYY5q_ugdx63U5ue80NqV5fqt17sv98-9g97ZNaSkwyYaRBwQ2zEqEQDo1nptBYlLUHD9xIYTwWBmvGMbcgDErvLaDRYI3NNkRcZus4TFN0Xo1x-Tv-KQbq7KHOHursoS4e6uSR_QP5vVnf
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.11591/ijece.v15i2.pp2042-2054
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2722-2578
ExternalDocumentID 10_11591_ijece_v15i2_pp2042_2054
GroupedDBID .4S
.DC
8FE
8FG
AAKDD
AAYXX
ABJCF
ABUWG
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BENPR
BGLVJ
BPHCQ
BVBZV
CCPQU
CITATION
EOJEC
HCIFZ
I-F
K6V
K7-
KWQ
L6V
M7S
OBODZ
OK1
P62
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PTHSS
TUS
ID FETCH-LOGICAL-c994-38b9b482b1d94068e4bf1b6a467cf0f02b98bf46b4c1245d08b49ffd04ba0dbd3
ISSN 2088-8708
IngestDate Sat Nov 29 02:39:50 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License http://creativecommons.org/licenses/by-sa/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c994-38b9b482b1d94068e4bf1b6a467cf0f02b98bf46b4c1245d08b49ffd04ba0dbd3
ORCID 0000-0002-5832-5057
0000-0001-5348-4537
0000-0002-3944-5459
0000-0002-6760-4824
OpenAccessLink https://doi.org/10.11591/ijece.v15i2.pp2042-2054
ParticipantIDs crossref_primary_10_11591_ijece_v15i2_pp2042_2054
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationTitle International journal of electrical and computer engineering (Malacca, Malacca)
PublicationYear 2025
SSID ssib044740765
ssj0000866295
Score 2.3053603
Snippet Research on image validation models is an interesting topic. The application of deep learning (DL) for object detection has been demonstrated to effectively...
SourceID crossref
SourceType Index Database
StartPage 2042
Title Target image validation modeling using deep neural network algorithm
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2722-2578
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044740765
  issn: 2088-8708
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2722-2578
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000866295
  issn: 2088-8708
  databaseCode: P5Z
  dateStart: 20110901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2722-2578
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000866295
  issn: 2088-8708
  databaseCode: K7-
  dateStart: 20110901
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: East & South Asia Database
  customDbUrl:
  eissn: 2722-2578
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000866295
  issn: 2088-8708
  databaseCode: BVBZV
  dateStart: 20110901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eastsouthasia
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2722-2578
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000866295
  issn: 2088-8708
  databaseCode: M7S
  dateStart: 20110901
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2722-2578
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000866295
  issn: 2088-8708
  databaseCode: BENPR
  dateStart: 20110901
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKwgEOiKd4ywduVZbEdRL7iKArLqxW2h72FvlJAk0alW61XPiL_CXGdl4FIR4Sl8hylFHa79PMeDIPhF4ujDGSZ2nENLcRTZIsEkqzSIGt1LkmiZXMD5vIT0_ZxQU_m82-9bUw-3XeNOzqirf_FWrYA7Bd6exfwD0IhQ1YA-hwBdjh-mfA-9zueVW7bBwQXIWpSWHmjQsMXPrwgDamnbtuloBRE3LB52L9YbOtdmU9dVkPY4aTThNhgs7QbUB18yHmZmxx6PzX92ItAMBQGNQt-Yiz-9rxSZRB05t6DE-fV-Wmlt3IlbPNeieGoqKlNY32aQjnX0S5HbNETkRZ-32_mEY0SDpJhPGKj4DmAy0dB71swl4Oh2anXg40dzphKJmq4Ti07PrZPqTcGYjqo1HmeJ-kFTluW-JLlOLQzPqwJfcPpnJIYPRHJ5BVeEmFl1QESYWTdA1dJzncd7mkX5e9gqM0h_Nz91nZuwosy4ifDDT85j7bDB5-9YvXnLhQE19odQfd7g4x-HUg3100M809dGvS2vI-ehtoiD0N8UhD3NMQexpiR0McaIg7GuKBhg_Q6mS5evMu6iZ2RMq1mF4wySVlRCaag6PIDJU2kZkAY6xsbGMiOZOWZpIqcCtTHTNJubU6plLEWurFQ3TUbBrzCGEqbKpJxp2KoVQwlkmZq1RJ8KcXqUgfo6T_D4o29GUpfgfKk3945im6OVL0GTrabS_Nc3RD7XfV5-0Lj-53NtaNbQ
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Target+image+validation+modeling+using+deep+neural+network+algorithm&rft.jtitle=International+journal+of+electrical+and+computer+engineering+%28Malacca%2C+Malacca%29&rft.au=Mubarakah%2C+Naemah&rft.au=Sihombing%2C+Poltak&rft.au=Efendi%2C+Syahril&rft.au=Fahmi%2C+Fahmi&rft.date=2025-04-01&rft.issn=2088-8708&rft.eissn=2722-2578&rft.volume=15&rft.issue=2&rft.spage=2042&rft_id=info:doi/10.11591%2Fijece.v15i2.pp2042-2054&rft.externalDBID=n%2Fa&rft.externalDocID=10_11591_ijece_v15i2_pp2042_2054
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2088-8708&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2088-8708&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2088-8708&client=summon