ARM-Net: Improved MRI brain tumor segmentation method based on attentional mechanism and residual module

INTRODUCTION: Accurate tumor segmentation is a prerequisite for reliable diagnosis and treatment of brain cancer. Gliomas, a highly prevalent and life-threatening type of brain tumor, pose a challenge for segmentation due to the intricate nature of brain structures and unpredictable appearances on b...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:EAI Endorsed Transactions on e-Learning Ročník 10
Hlavný autor: MingHu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Ghent European Alliance for Innovation (EAI) 26.07.2024
Predmet:
ISSN:2032-9253, 2032-9253
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract INTRODUCTION: Accurate tumor segmentation is a prerequisite for reliable diagnosis and treatment of brain cancer. Gliomas, a highly prevalent and life-threatening type of brain tumor, pose a challenge for segmentation due to the intricate nature of brain structures and unpredictable appearances on brain MRI images.OBJECTIVES: Current methods for brain tumor segmentation mostly rely on deep convolutional neural networks, which suffer from significant loss of feature information during encoding and decoding and the inability to capture tumor contours in detail.METHODS: To address these challenges, this study rethinks the network architecture for MRI brain tumor segmentation. It proposes ARM-Net: an improved method for MRI brain tumor segmentation based on attention mechanisms and residual modules. Firstly, inverted external attention and dilated gated attention are employed in the last two layers of the encoder to enable the network to interact with both lesion areas and global information, facilitating better interaction among the four modalities. Secondly, different numbers of Res-Paths are added in the encoder's first two layers and the decoder's last two layers to effectively mitigate the semantic gap issues caused by traditional skip connections.RESULTS: Experiments on the BraTS 2019 dataset demonstrate that ARM-Net outperforms other similar models in terms of segmentation performance.CONCLUSION: The experiment showed that the ARM-Net model could segment the contour structure of the tumor better than other methods. 
AbstractList INTRODUCTION: Accurate tumor segmentation is a prerequisite for reliable diagnosis and treatment of brain cancer. Gliomas, a highly prevalent and life-threatening type of brain tumor, pose a challenge for segmentation due to the intricate nature of brain structures and unpredictable appearances on brain MRI images.OBJECTIVES: Current methods for brain tumor segmentation mostly rely on deep convolutional neural networks, which suffer from significant loss of feature information during encoding and decoding and the inability to capture tumor contours in detail.METHODS: To address these challenges, this study rethinks the network architecture for MRI brain tumor segmentation. It proposes ARM-Net: an improved method for MRI brain tumor segmentation based on attention mechanisms and residual modules. Firstly, inverted external attention and dilated gated attention are employed in the last two layers of the encoder to enable the network to interact with both lesion areas and global information, facilitating better interaction among the four modalities. Secondly, different numbers of Res-Paths are added in the encoder's first two layers and the decoder's last two layers to effectively mitigate the semantic gap issues caused by traditional skip connections.RESULTS: Experiments on the BraTS 2019 dataset demonstrate that ARM-Net outperforms other similar models in terms of segmentation performance.CONCLUSION: The experiment showed that the ARM-Net model could segment the contour structure of the tumor better than other methods.
INTRODUCTION: Accurate tumor segmentation is a prerequisite for reliable diagnosis and treatment of brain cancer. Gliomas, a highly prevalent and life-threatening type of brain tumor, pose a challenge for segmentation due to the intricate nature of brain structures and unpredictable appearances on brain MRI images.OBJECTIVES: Current methods for brain tumor segmentation mostly rely on deep convolutional neural networks, which suffer from significant loss of feature information during encoding and decoding and the inability to capture tumor contours in detail.METHODS: To address these challenges, this study rethinks the network architecture for MRI brain tumor segmentation. It proposes ARM-Net: an improved method for MRI brain tumor segmentation based on attention mechanisms and residual modules. Firstly, inverted external attention and dilated gated attention are employed in the last two layers of the encoder to enable the network to interact with both lesion areas and global information, facilitating better interaction among the four modalities. Secondly, different numbers of Res-Paths are added in the encoder's first two layers and the decoder's last two layers to effectively mitigate the semantic gap issues caused by traditional skip connections.RESULTS: Experiments on the BraTS 2019 dataset demonstrate that ARM-Net outperforms other similar models in terms of segmentation performance.CONCLUSION: The experiment showed that the ARM-Net model could segment the contour structure of the tumor better than other methods. 
Author MingHu
Author_xml – sequence: 1
  surname: MingHu
  fullname: MingHu
BookMark eNpNkEtLAzEUhYMoWGs3_oKAO2FqHk1n4q4UH4VWoXQfMpMbOzKT1CQj-O9NrQtX93E-LueeK3TuvAOEbiiZziip7gESdFMhBT9DI0Y4KyQT_Pxff4kmMbY1YaWgTAg2QvvFdlO8QnrAq_4Q_BcYvNmucB1063Aaeh9whPceXNKp9Q73kPbe4FrHTOZZp5S1rOgua81euzb2WDuDA8TWDMe1N0MH1-jC6i7C5K-O0e7pcbd8KdZvz6vlYl00UvKioZUldfYGBiyVtKKGSF4bIIzThlhuDSPNnNC5NJJSw6zJGNMzRiy1peFjdHs6m5_5HCAm9eGHkN1FxfPXcyHLqszU3Ylqgo8xgFWH0PY6fCtK1DFL9ZulOmbJfwAF1mnc
ContentType Journal Article
Copyright 2024. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
0-V
3V.
7XB
88B
8FE
8FG
8FK
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CJNVE
DWQXO
GNUQQ
HCIFZ
M0P
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEDU
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.4108/eetel.5953
DatabaseName CrossRef
ProQuest Social Sciences Premium Collection
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Education Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
Education Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Education Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
One Education
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Education
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Social Science Premium Collection
Education Collection
ProQuest Central Basic
ProQuest Education Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Education Journals (Alumni Edition)
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content (ProQuest)
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2032-9253
ExternalDocumentID 10_4108_eetel_5953
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
0-V
3V.
7XB
8FE
8FG
8FK
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CJNVE
DWQXO
GNUQQ
HCIFZ
M0P
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEDU
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c993-c18f0b125edef19181d093bde0231c0f3fd20c60169d911d2fdf192a420f1f7d3
IEDL.DBID PIMPY
ISSN 2032-9253
IngestDate Thu Nov 27 08:51:13 EST 2025
Sat Nov 29 06:03:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/3.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c993-c18f0b125edef19181d093bde0231c0f3fd20c60169d911d2fdf192a420f1f7d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/publiccontent/docview/3275659787?pq-origsite=%requestingapplication%
PQID 3275659787
PQPubID 4477231
ParticipantIDs proquest_journals_3275659787
crossref_primary_10_4108_eetel_5953
PublicationCentury 2000
PublicationDate 2024-07-26
PublicationDateYYYYMMDD 2024-07-26
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-26
  day: 26
PublicationDecade 2020
PublicationPlace Ghent
PublicationPlace_xml – name: Ghent
PublicationTitle EAI Endorsed Transactions on e-Learning
PublicationYear 2024
Publisher European Alliance for Innovation (EAI)
Publisher_xml – name: European Alliance for Innovation (EAI)
SSID ssib027512552
ssib055897071
Score 2.26298
Snippet INTRODUCTION: Accurate tumor segmentation is a prerequisite for reliable diagnosis and treatment of brain cancer. Gliomas, a highly prevalent and...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
SubjectTerms Artificial neural networks
Attention
Brain
Brain cancer
Coders
Decoding
Image segmentation
Magnetic resonance imaging
Modules
Tumors
Title ARM-Net: Improved MRI brain tumor segmentation method based on attentional mechanism and residual module
URI https://www.proquest.com/docview/3275659787
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2032-9253
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib055897071
  issn: 2032-9253
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwEB5By4ELDy0IFraytHsNuE7cJHtBLCpaDq2iigNwiRKPDUg0ZZuWI799ZxIXxIUTh1iKnEjReDIPe-b7AH5psorOOBs4m-ggiqULyiJKg6JEhYlC2S9asol4PE5ubtLMt0fXvqxyZRMbQ92iPXPdNhnhU5wZ3jE_DRm1nGLhJD57_hcwhxSftXpCjXXoMvCW7EA3uxpltyv9onfInes3d651ksbkYlvU0ogJcSxFqk8nOtXhRz_10Uw3vudy-2u_ege2fAwqzlul2YU1W32Dh_PJKBjbxW_R7jNYFKPJlSiZQkIsltPZXNT2fupblSrRUk8L9oIo6J5xOn31Os1xP_FjPRVFhYIS-qbjS0xnuHyye3B9Oby--Bt4GobAcHGf6SdOliQ4i9ZRdkcBrkzDEi0jxxnpQodKmgbVBclyonJIj6kiUtL1XYzhPnSqWWUPQJiQsskiTCK-SkxTG5WkRH1p9AAHKj2EnyuZ588t2EZOSQqvTN6sTM4rcwjHK1nn_oer83fRfv98-gg2FcUlvD2rBsfQWcyX9gdsmJfFYz3vQffPcJxNerA-khmPr0MaM33X87r0H82_2Ts
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS-RAEC7UFfSiKyo-Rrdh9RjNdNKTRBAZdMVBZxCZg3gJSVe3DjgZncwo-6P2P1qVh-LFm4c95NB0aJJ8lXp1V30Ae4q0otXWONaEyvED1zpp4kdOkqLEUKLbTEqyiaDXC29vo-sZ-FfXwvCxylonFooaR5pz5Ice9ykn7zcMTp6eHWaN4t3VmkKjFItL8_eVQrb8uHNG-O5Lef6nf3rhVKwCjuazaroZWjcls27QWApWyF-joD5Fw43QtGs9i9LVRZMSJEWA0iLdJhNfurZpA_Ro2Vn44dOYCROu1V0tvvSAtKx69xaUCqOALHjZFNVnvh1DjvDjgYqU99kMfrYChWk7X_7PPspPWKp8aNEuhX4FZky2Cg_tm67TM5MjUeZJDIruTUekTIEhJtPhaCxycz-sSq0yUVJnC7biKGjMfUar0_c0x_XQg3wokgzF2ORFxZoYjnD6aNag_x3vtg5z2SgzGyC0R9Fw4oU-XylGkfFT-gmarlYtbMloE37XoMZPZbOQmIIshj4uoI8Z-k1o1GDGlcLI4w8kt76e_gULF_3uVXzV6V1uwyJJoc-pZtlqwNxkPDU7MK9fJoN8vFsIp4D4m3F_A0lsI0Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ARM-Net%3A+Improved+MRI+brain+tumor+segmentation+method+based+on+attentional+mechanism+and+residual+module&rft.jtitle=EAI+Endorsed+Transactions+on+e-Learning&rft.au=MingHu&rft.date=2024-07-26&rft.pub=European+Alliance+for+Innovation+%28EAI%29&rft.eissn=2032-9253&rft.volume=10&rft_id=info:doi/10.4108%2Feetel.5953
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2032-9253&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2032-9253&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2032-9253&client=summon