Gradient boosting algorithm for predicting student success
The idea of using machine learning resolution techniques to predict student performance on an online learning platform such as Moodle has attracted considerable interest. Machine learning algorithms are capable of correctly interpreting the content and thus predicting the performance of our students...
Uložené v:
| Vydané v: | International journal of electrical and computer engineering (Malacca, Malacca) Ročník 15; číslo 4; s. 4181 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
01.08.2025
|
| ISSN: | 2088-8708, 2722-2578 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The idea of using machine learning resolution techniques to predict student performance on an online learning platform such as Moodle has attracted considerable interest. Machine learning algorithms are capable of correctly interpreting the content and thus predicting the performance of our students. Algorithms namely gradient boosting machines (GBM) and eXtreme gradient boosting (XGBoost) are highly recommended by most researchers due to their high accuracy and smooth boosting time. This research was conducted to analyze the effectiveness of the XGBoost algorithm on Moodle platform to predict student performance by analyzing their online activities, practicing various types of online activities. The proposed algorithm was applied for the prediction of academic performance based on this data received from Moodle. The results demonstrate a strong correlation between many activities like the number of hours spent online and the achievement of academic goals, with a remarkable prediction rate of 0.949. |
|---|---|
| AbstractList | The idea of using machine learning resolution techniques to predict student performance on an online learning platform such as Moodle has attracted considerable interest. Machine learning algorithms are capable of correctly interpreting the content and thus predicting the performance of our students. Algorithms namely gradient boosting machines (GBM) and eXtreme gradient boosting (XGBoost) are highly recommended by most researchers due to their high accuracy and smooth boosting time. This research was conducted to analyze the effectiveness of the XGBoost algorithm on Moodle platform to predict student performance by analyzing their online activities, practicing various types of online activities. The proposed algorithm was applied for the prediction of academic performance based on this data received from Moodle. The results demonstrate a strong correlation between many activities like the number of hours spent online and the achievement of academic goals, with a remarkable prediction rate of 0.949. |
| Author | Jabir, Brahim Falih, Noureddine Merzouk, Soukaina Hamzaoui, Radoine |
| Author_xml | – sequence: 1 givenname: Brahim orcidid: 0000-0002-8762-9199 surname: Jabir fullname: Jabir, Brahim – sequence: 2 givenname: Soukaina orcidid: 0000-0002-2090-5881 surname: Merzouk fullname: Merzouk, Soukaina – sequence: 3 givenname: Radoine orcidid: 0009-0003-4728-8961 surname: Hamzaoui fullname: Hamzaoui, Radoine – sequence: 4 givenname: Noureddine orcidid: 0000-0002-1418-3173 surname: Falih fullname: Falih, Noureddine |
| BookMark | eNot0M1KAzEUBeAgFay17zAvkDG_k8SdFK1CwU33IZPc1Eg7GZKp4Ntrp67ugXs4i-8eLYY8AEINJS2l0tDH9AUe2m8qk2jHUVBNsaCG3qAlU4xhJpVe_GWiNdaK6Du0rjX1RAgliOrkEj1tiwsJhqnpc65TGg6NOx5ySdPnqYm5NGOBkPz8qNM5XJr17D3U-oBuoztWWP_fFdq_vuw3b3j3sX3fPO-wN4ZiwzU3QITvePBKggoSaB89D1G5SGIg3CnuGYhOmMCZBAY-sEAC6SLxnK-Qvs76kmstEO1Y0smVH0uJnRXsrGBnBXtVsBcF_gtXz1ao |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.11591/ijece.v15i4.pp4181-4191 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2722-2578 |
| ExternalDocumentID | 10_11591_ijece_v15i4_pp4181_4191 |
| GroupedDBID | .4S .DC 8FE 8FG AAKDD AAYXX ABJCF ABUWG AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BENPR BGLVJ BPHCQ BVBZV CCPQU CITATION EOJEC HCIFZ I-F K6V K7- KWQ L6V M7S OBODZ OK1 P62 PHGZM PHGZT PQGLB PQQKQ PROAC PTHSS TUS |
| ID | FETCH-LOGICAL-c991-93839e04c63dc75e7d5e1bfc3df7af0fd03a73c2e4649d325e2ecd2d0d06f0c33 |
| ISSN | 2088-8708 |
| IngestDate | Sat Nov 29 07:37:11 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | http://creativecommons.org/licenses/by-sa/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c991-93839e04c63dc75e7d5e1bfc3df7af0fd03a73c2e4649d325e2ecd2d0d06f0c33 |
| ORCID | 0000-0002-8762-9199 0000-0002-1418-3173 0009-0003-4728-8961 0000-0002-2090-5881 |
| OpenAccessLink | https://ijece.iaescore.com/index.php/IJECE/article/download/37795/18391 |
| ParticipantIDs | crossref_primary_10_11591_ijece_v15i4_pp4181_4191 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-01 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of electrical and computer engineering (Malacca, Malacca) |
| PublicationYear | 2025 |
| SSID | ssib044740765 ssj0000866295 |
| Score | 2.3170865 |
| Snippet | The idea of using machine learning resolution techniques to predict student performance on an online learning platform such as Moodle has attracted... |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 4181 |
| Title | Gradient boosting algorithm for predicting student success |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2722-2578 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044740765 issn: 2088-8708 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database (ProQuest) customDbUrl: eissn: 2722-2578 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000866295 issn: 2088-8708 databaseCode: P5Z dateStart: 20110901 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2722-2578 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000866295 issn: 2088-8708 databaseCode: K7- dateStart: 20110901 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2722-2578 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000866295 issn: 2088-8708 databaseCode: M7S dateStart: 20110901 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2722-2578 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000866295 issn: 2088-8708 databaseCode: BENPR dateStart: 20110901 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest East & South Asia Database (NC LIVE) customDbUrl: eissn: 2722-2578 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000866295 issn: 2088-8708 databaseCode: BVBZV dateStart: 20110901 isFulltext: true titleUrlDefault: https://search.proquest.com/eastsouthasia providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWwgEOiKd4KwduqxTHduKEG0ItCEGFYA-9RY7t0FTbbJRNVlUP_D5-FuNHHgUhHhKXbORsRuv9Rp9nxuMZhJ6LNClTplSYKE5DxrUIBWAfgnGhJYsKjrE9KPyeHx2lx8fZx8Xi23AWZrfmdZ2en2fNf4UaxgBsc3T2L-AehcIA3APocAXY4fpHwL9pbRZXtwT7eWuTmsX6y6atupMzm1PYtGZvpnNxBFvYcrntbdvEuaF6OVI4qy_h-uaMNQak7wqx1FNhQ2O1fhBrAbC540D-dow5vBNF5aIEQHXV2Qi6bi82vaXnz_ApfGdvH2C_EJveph58EsDDUzbAIXgSJ24LqoepqeGRD2WQeEyk84xHgPKAnrEjZO3GOHjLhlcuUXY8U002418WuQYwPy8McWZWhupUS72_i-KK7TeN-bbZBo-mxXBIAPhhjRwzF63PBLJyKym3knInKTeSrqCrhMNzk0T69WBgNsY4OM5-P9naCGmSENsSaJzzkGYGL7_4xc-c2U4zI2h1C9303kvwymndbbTQ9R10Y1bT8i56OehfMOhfMOpfAPoXTPoXeP0LvP7dQ6vDg9Xrt6Fv0BFKkzCXUbCuNWYyoUryWHMV66goJVUlFyUuFaaCU0k0S1imKIk10VIRhRVOSiwpvY_26k2tH6CAK1yQQnJewp9VUFOijKmI00xhRksZP0TRMPO8cWVY8t9B8egf3nmMrk-K-QTtdW2vn6JrctdV2_aZxfQ7FtaHPA |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gradient+boosting+algorithm+for+predicting+student+success&rft.jtitle=International+journal+of+electrical+and+computer+engineering+%28Malacca%2C+Malacca%29&rft.au=Jabir%2C+Brahim&rft.au=Merzouk%2C+Soukaina&rft.au=Hamzaoui%2C+Radoine&rft.au=Falih%2C+Noureddine&rft.date=2025-08-01&rft.issn=2088-8708&rft.eissn=2722-2578&rft.volume=15&rft.issue=4&rft.spage=4181&rft_id=info:doi/10.11591%2Fijece.v15i4.pp4181-4191&rft.externalDBID=n%2Fa&rft.externalDocID=10_11591_ijece_v15i4_pp4181_4191 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2088-8708&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2088-8708&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2088-8708&client=summon |