Gradient boosting algorithm for predicting student success

The idea of using machine learning resolution techniques to predict student performance on an online learning platform such as Moodle has attracted considerable interest. Machine learning algorithms are capable of correctly interpreting the content and thus predicting the performance of our students...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of electrical and computer engineering (Malacca, Malacca) Ročník 15; číslo 4; s. 4181
Hlavní autori: Jabir, Brahim, Merzouk, Soukaina, Hamzaoui, Radoine, Falih, Noureddine
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: 01.08.2025
ISSN:2088-8708, 2722-2578
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The idea of using machine learning resolution techniques to predict student performance on an online learning platform such as Moodle has attracted considerable interest. Machine learning algorithms are capable of correctly interpreting the content and thus predicting the performance of our students. Algorithms namely gradient boosting machines (GBM) and eXtreme gradient boosting (XGBoost) are highly recommended by most researchers due to their high accuracy and smooth boosting time. This research was conducted to analyze the effectiveness of the XGBoost algorithm on Moodle platform to predict student performance by analyzing their online activities, practicing various types of online activities. The proposed algorithm was applied for the prediction of academic performance based on this data received from Moodle. The results demonstrate a strong correlation between many activities like the number of hours spent online and the achievement of academic goals, with a remarkable prediction rate of 0.949.
AbstractList The idea of using machine learning resolution techniques to predict student performance on an online learning platform such as Moodle has attracted considerable interest. Machine learning algorithms are capable of correctly interpreting the content and thus predicting the performance of our students. Algorithms namely gradient boosting machines (GBM) and eXtreme gradient boosting (XGBoost) are highly recommended by most researchers due to their high accuracy and smooth boosting time. This research was conducted to analyze the effectiveness of the XGBoost algorithm on Moodle platform to predict student performance by analyzing their online activities, practicing various types of online activities. The proposed algorithm was applied for the prediction of academic performance based on this data received from Moodle. The results demonstrate a strong correlation between many activities like the number of hours spent online and the achievement of academic goals, with a remarkable prediction rate of 0.949.
Author Jabir, Brahim
Falih, Noureddine
Merzouk, Soukaina
Hamzaoui, Radoine
Author_xml – sequence: 1
  givenname: Brahim
  orcidid: 0000-0002-8762-9199
  surname: Jabir
  fullname: Jabir, Brahim
– sequence: 2
  givenname: Soukaina
  orcidid: 0000-0002-2090-5881
  surname: Merzouk
  fullname: Merzouk, Soukaina
– sequence: 3
  givenname: Radoine
  orcidid: 0009-0003-4728-8961
  surname: Hamzaoui
  fullname: Hamzaoui, Radoine
– sequence: 4
  givenname: Noureddine
  orcidid: 0000-0002-1418-3173
  surname: Falih
  fullname: Falih, Noureddine
BookMark eNot0M1KAzEUBeAgFay17zAvkDG_k8SdFK1CwU33IZPc1Eg7GZKp4Ntrp67ugXs4i-8eLYY8AEINJS2l0tDH9AUe2m8qk2jHUVBNsaCG3qAlU4xhJpVe_GWiNdaK6Du0rjX1RAgliOrkEj1tiwsJhqnpc65TGg6NOx5ySdPnqYm5NGOBkPz8qNM5XJr17D3U-oBuoztWWP_fFdq_vuw3b3j3sX3fPO-wN4ZiwzU3QITvePBKggoSaB89D1G5SGIg3CnuGYhOmMCZBAY-sEAC6SLxnK-Qvs76kmstEO1Y0smVH0uJnRXsrGBnBXtVsBcF_gtXz1ao
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.11591/ijece.v15i4.pp4181-4191
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2722-2578
ExternalDocumentID 10_11591_ijece_v15i4_pp4181_4191
GroupedDBID .4S
.DC
8FE
8FG
AAKDD
AAYXX
ABJCF
ABUWG
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BENPR
BGLVJ
BPHCQ
BVBZV
CCPQU
CITATION
EOJEC
HCIFZ
I-F
K6V
K7-
KWQ
L6V
M7S
OBODZ
OK1
P62
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PTHSS
TUS
ID FETCH-LOGICAL-c991-93839e04c63dc75e7d5e1bfc3df7af0fd03a73c2e4649d325e2ecd2d0d06f0c33
ISSN 2088-8708
IngestDate Sat Nov 29 07:37:11 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License http://creativecommons.org/licenses/by-sa/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c991-93839e04c63dc75e7d5e1bfc3df7af0fd03a73c2e4649d325e2ecd2d0d06f0c33
ORCID 0000-0002-8762-9199
0000-0002-1418-3173
0009-0003-4728-8961
0000-0002-2090-5881
OpenAccessLink https://ijece.iaescore.com/index.php/IJECE/article/download/37795/18391
ParticipantIDs crossref_primary_10_11591_ijece_v15i4_pp4181_4191
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationTitle International journal of electrical and computer engineering (Malacca, Malacca)
PublicationYear 2025
SSID ssib044740765
ssj0000866295
Score 2.3170865
Snippet The idea of using machine learning resolution techniques to predict student performance on an online learning platform such as Moodle has attracted...
SourceID crossref
SourceType Index Database
StartPage 4181
Title Gradient boosting algorithm for predicting student success
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2722-2578
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044740765
  issn: 2088-8708
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database (ProQuest)
  customDbUrl:
  eissn: 2722-2578
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000866295
  issn: 2088-8708
  databaseCode: P5Z
  dateStart: 20110901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2722-2578
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000866295
  issn: 2088-8708
  databaseCode: K7-
  dateStart: 20110901
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2722-2578
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000866295
  issn: 2088-8708
  databaseCode: M7S
  dateStart: 20110901
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2722-2578
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000866295
  issn: 2088-8708
  databaseCode: BENPR
  dateStart: 20110901
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest East & South Asia Database (NC LIVE)
  customDbUrl:
  eissn: 2722-2578
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000866295
  issn: 2088-8708
  databaseCode: BVBZV
  dateStart: 20110901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eastsouthasia
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWwgEOiKd4KwduqxTHduKEG0ItCEGFYA-9RY7t0FTbbJRNVlUP_D5-FuNHHgUhHhKXbORsRuv9Rp9nxuMZhJ6LNClTplSYKE5DxrUIBWAfgnGhJYsKjrE9KPyeHx2lx8fZx8Xi23AWZrfmdZ2en2fNf4UaxgBsc3T2L-AehcIA3APocAXY4fpHwL9pbRZXtwT7eWuTmsX6y6atupMzm1PYtGZvpnNxBFvYcrntbdvEuaF6OVI4qy_h-uaMNQak7wqx1FNhQ2O1fhBrAbC540D-dow5vBNF5aIEQHXV2Qi6bi82vaXnz_ApfGdvH2C_EJveph58EsDDUzbAIXgSJ24LqoepqeGRD2WQeEyk84xHgPKAnrEjZO3GOHjLhlcuUXY8U002418WuQYwPy8McWZWhupUS72_i-KK7TeN-bbZBo-mxXBIAPhhjRwzF63PBLJyKym3knInKTeSrqCrhMNzk0T69WBgNsY4OM5-P9naCGmSENsSaJzzkGYGL7_4xc-c2U4zI2h1C9303kvwymndbbTQ9R10Y1bT8i56OehfMOhfMOpfAPoXTPoXeP0LvP7dQ6vDg9Xrt6Fv0BFKkzCXUbCuNWYyoUryWHMV66goJVUlFyUuFaaCU0k0S1imKIk10VIRhRVOSiwpvY_26k2tH6CAK1yQQnJewp9VUFOijKmI00xhRksZP0TRMPO8cWVY8t9B8egf3nmMrk-K-QTtdW2vn6JrctdV2_aZxfQ7FtaHPA
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gradient+boosting+algorithm+for+predicting+student+success&rft.jtitle=International+journal+of+electrical+and+computer+engineering+%28Malacca%2C+Malacca%29&rft.au=Jabir%2C+Brahim&rft.au=Merzouk%2C+Soukaina&rft.au=Hamzaoui%2C+Radoine&rft.au=Falih%2C+Noureddine&rft.date=2025-08-01&rft.issn=2088-8708&rft.eissn=2722-2578&rft.volume=15&rft.issue=4&rft.spage=4181&rft_id=info:doi/10.11591%2Fijece.v15i4.pp4181-4191&rft.externalDBID=n%2Fa&rft.externalDocID=10_11591_ijece_v15i4_pp4181_4191
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2088-8708&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2088-8708&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2088-8708&client=summon