Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Principal Component Analysis (PCA) for Particulate Matter (PM) Anomaly Detection

This research addresses a critical issue in industrial environments: air quality, specifically regarding PM 1.0 and PM 2.5. High concentrations of these particles pose significant health risks. The study measures temperature, humidity, pressure, altitude, PM 1.0, and PM 2.5 and shows the effectivene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lontar komputer Jg. 15; H. 2; S. 75 - 86
Hauptverfasser: Hanna Arini Parhusip, Suryasatriya Trihandaru, Bambang Susanto, Johanes Dian Kurniawan, Adrianus Herry Heriadi, Petrus Priyo Santosa, Yohanes Sardjono
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 12.10.2025
ISSN:2088-1541, 2541-5832
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This research addresses a critical issue in industrial environments: air quality, specifically regarding PM 1.0 and PM 2.5. High concentrations of these particles pose significant health risks. The study measures temperature, humidity, pressure, altitude, PM 1.0, and PM 2.5 and shows the effectiveness of using AIOT-Particle devices to analyze these features with Principal Component Analysis (PCA). Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is used to detect anomalies during the observation period. Anomalies occur when the altitude ranges from 65 to 70 units, according to PM 1.0 and PM 2.5 values. The positions where anomalies occur are illustrated based on altitude, temperature, pressure, and concentration. The results demonstrate that altitude dominates as the first feature. Finally, the research concludes that altitude, PM 1.0, and PM 2.5 are the dominant features. The study confirms the effectiveness of PCA and recommends using these three features for anomaly detection in DBSCAN. Overall, the research highlights the novelty and success of AIOT-Particle in industrial environments.
AbstractList This research addresses a critical issue in industrial environments: air quality, specifically regarding PM 1.0 and PM 2.5. High concentrations of these particles pose significant health risks. The study measures temperature, humidity, pressure, altitude, PM 1.0, and PM 2.5 and shows the effectiveness of using AIOT-Particle devices to analyze these features with Principal Component Analysis (PCA). Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is used to detect anomalies during the observation period. Anomalies occur when the altitude ranges from 65 to 70 units, according to PM 1.0 and PM 2.5 values. The positions where anomalies occur are illustrated based on altitude, temperature, pressure, and concentration. The results demonstrate that altitude dominates as the first feature. Finally, the research concludes that altitude, PM 1.0, and PM 2.5 are the dominant features. The study confirms the effectiveness of PCA and recommends using these three features for anomaly detection in DBSCAN. Overall, the research highlights the novelty and success of AIOT-Particle in industrial environments.
Author Yohanes Sardjono
Petrus Priyo Santosa
Bambang Susanto
Suryasatriya Trihandaru
Johanes Dian Kurniawan
Hanna Arini Parhusip
Adrianus Herry Heriadi
Author_xml – sequence: 1
  surname: Hanna Arini Parhusip
  fullname: Hanna Arini Parhusip
– sequence: 2
  surname: Suryasatriya Trihandaru
  fullname: Suryasatriya Trihandaru
– sequence: 3
  surname: Bambang Susanto
  fullname: Bambang Susanto
– sequence: 4
  surname: Johanes Dian Kurniawan
  fullname: Johanes Dian Kurniawan
– sequence: 5
  surname: Adrianus Herry Heriadi
  fullname: Adrianus Herry Heriadi
– sequence: 6
  surname: Petrus Priyo Santosa
  fullname: Petrus Priyo Santosa
– sequence: 7
  surname: Yohanes Sardjono
  fullname: Yohanes Sardjono
BookMark eNotkE1OwzAQhS0EElB6By_bRYKdOI2zTFN-Cm2p1O6tiWODpdSJYhfUo3BbXGA1o3lv5o2-W3RpO6sQwpTECeMsvV-9viz3yzghCYs_aRYbksQ9oRfoJskYjTKeJpehJ5xHNAyu0dg5UxPG8ozOOLtB3wtlnfGnaA5ONXjXgzfQ4qo9Oq8GY99xp3HZ962RQemsw1_Gf-BNZ5zCk8V8V5WbKQbb4G1wS9Ofl7tDH_60HpcW2pMzDk-2VTnFuhvwFgZv5LEFr_AafAgJ4noarN0hmPFCeSXPSXfoSkPr1Pi_jtD-8WFfPUert6dlVa4iWRQ04hIU8BQyoGk-Y5TqtC7SOtOMMeCQFwXMeE543dBGci1rxZtGUakBMsnzJh0h_ndWDp1zg9KiH8wBhpOgRPxCFn-QxRmyCJBFgCwC5PQHAx11og
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.24843/LKJITI.2024.v15.i02.p01
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2541-5832
EndPage 86
ExternalDocumentID 10_24843_LKJITI_2024_v15_i02_p01
GroupedDBID 5VS
AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c991-8caea83a5a1376411f3b93b5f444a8a799a68708bd1dc8fcbe8dde1cfaa5c87d3
ISSN 2088-1541
IngestDate Sat Oct 25 05:45:22 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c991-8caea83a5a1376411f3b93b5f444a8a799a68708bd1dc8fcbe8dde1cfaa5c87d3
OpenAccessLink https://doi.org/10.24843/lkjiti.2024.v15.i02.p01
PageCount 12
ParticipantIDs crossref_primary_10_24843_LKJITI_2024_v15_i02_p01
PublicationCentury 2000
PublicationDate 2025-10-12
PublicationDateYYYYMMDD 2025-10-12
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-12
  day: 12
PublicationDecade 2020
PublicationTitle Lontar komputer
PublicationYear 2025
SSID ssib044751684
ssj0001920588
Score 2.3059776
Snippet This research addresses a critical issue in industrial environments: air quality, specifically regarding PM 1.0 and PM 2.5. High concentrations of these...
SourceID crossref
SourceType Index Database
StartPage 75
Title Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Principal Component Analysis (PCA) for Particulate Matter (PM) Anomaly Detection
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2541-5832
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001920588
  issn: 2088-1541
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2541-5832
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044751684
  issn: 2088-1541
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VwoELb8Sz2gOHRpGDn_H66KZFlCZRJHLozVrbazXQ2FZih-bC_-DfMrO7dhwE4iFxiRw_RpvM55nx-JsZQt7YIvOExwG8wncN1_cTg5tiCFsJS5HdlGayZf7Yn07Z5WUwO7hFmlqYzbWf5-zmJij_q6phHygbS2f_Qt2tUNgB26B0-AS1w-cfKf4UKenV1jgB_wTBJDKmMUFwXWNLBM1xDjuvrVUqdlos1jLcPD35OAqnmCxQdQQyFy8zDMuyyJE50PYxgbNnoxBPRa7iTK4Fp4HhOCMsEpInTPB4mBdLuAisWyWpX3k3Jh4XecVX_c96vsTOJuY574f4hgllX9VrRbdWr7BWW77G6QJb3p-vFlcyH1Lv0rLLmGOncaQcVUWHJcTBsoOZB6N2UWNB2hd9c-i8hy37pVqdVKgN9tGAAFAhU6h98BXryPbtu9fBsd0x1mpkS-P2hz9zKLbLXOxsMb74cD4_H8A63MHG8gYL0x6UOguz18P7B9_aMh7hWUvKipSkCCVFICkCSVGJBYi3bd8LkJQ4-XrWWETsxmgNdSXxJxWPm54cptr-fEVPk8Lf_mKZnZirEzzNH5B7-qmHhgqtD8mByB-R-81EEaodzGPybQ-8VIOX7sBLi4x2wUsRvFSClx4r6PYogIG2wKUtcGkDXHoMsO1RAC3tgJYq0MLBSY9qwNIWsE_I_N3ZfPTe0MNDjATJfCzhgjOHe9wCF-paVubEgRN7meu6nHE_CPgQXBWLUytNWJbEgoGjt5KMcy9hfuo8JYc5LO4ZocxxsCJOeAGHa4XD44CZsTC5I1LT99lzYjX_blSqFjHR79T94h-ueUnu7u6DV-SwWtXiNbmTbKrFenUkk0lHEj3fAYEXupc
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Density-Based+Spatial+Clustering+of+Applications+with+Noise+%28DBSCAN%29+and+Principal+Component+Analysis+%28PCA%29+for+Particulate+Matter+%28PM%29+Anomaly+Detection&rft.jtitle=Lontar+komputer&rft.au=Hanna+Arini+Parhusip&rft.au=Suryasatriya+Trihandaru&rft.au=Bambang+Susanto&rft.au=Johanes+Dian+Kurniawan&rft.date=2025-10-12&rft.issn=2088-1541&rft.eissn=2541-5832&rft.volume=15&rft.issue=2&rft.spage=75&rft.epage=86&rft_id=info:doi/10.24843%2FLKJITI.2024.v15.i02.p01&rft.externalDBID=n%2Fa&rft.externalDocID=10_24843_LKJITI_2024_v15_i02_p01
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2088-1541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2088-1541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2088-1541&client=summon