Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Principal Component Analysis (PCA) for Particulate Matter (PM) Anomaly Detection
This research addresses a critical issue in industrial environments: air quality, specifically regarding PM 1.0 and PM 2.5. High concentrations of these particles pose significant health risks. The study measures temperature, humidity, pressure, altitude, PM 1.0, and PM 2.5 and shows the effectivene...
Gespeichert in:
| Veröffentlicht in: | Lontar komputer Jg. 15; H. 2; S. 75 - 86 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
12.10.2025
|
| ISSN: | 2088-1541, 2541-5832 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This research addresses a critical issue in industrial environments: air quality, specifically regarding PM 1.0 and PM 2.5. High concentrations of these particles pose significant health risks. The study measures temperature, humidity, pressure, altitude, PM 1.0, and PM 2.5 and shows the effectiveness of using AIOT-Particle devices to analyze these features with Principal Component Analysis (PCA). Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is used to detect anomalies during the observation period. Anomalies occur when the altitude ranges from 65 to 70 units, according to PM 1.0 and PM 2.5 values. The positions where anomalies occur are illustrated based on altitude, temperature, pressure, and concentration. The results demonstrate that altitude dominates as the first feature. Finally, the research concludes that altitude, PM 1.0, and PM 2.5 are the dominant features. The study confirms the effectiveness of PCA and recommends using these three features for anomaly detection in DBSCAN. Overall, the research highlights the novelty and success of AIOT-Particle in industrial environments. |
|---|---|
| AbstractList | This research addresses a critical issue in industrial environments: air quality, specifically regarding PM 1.0 and PM 2.5. High concentrations of these particles pose significant health risks. The study measures temperature, humidity, pressure, altitude, PM 1.0, and PM 2.5 and shows the effectiveness of using AIOT-Particle devices to analyze these features with Principal Component Analysis (PCA). Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is used to detect anomalies during the observation period. Anomalies occur when the altitude ranges from 65 to 70 units, according to PM 1.0 and PM 2.5 values. The positions where anomalies occur are illustrated based on altitude, temperature, pressure, and concentration. The results demonstrate that altitude dominates as the first feature. Finally, the research concludes that altitude, PM 1.0, and PM 2.5 are the dominant features. The study confirms the effectiveness of PCA and recommends using these three features for anomaly detection in DBSCAN. Overall, the research highlights the novelty and success of AIOT-Particle in industrial environments. |
| Author | Yohanes Sardjono Petrus Priyo Santosa Bambang Susanto Suryasatriya Trihandaru Johanes Dian Kurniawan Hanna Arini Parhusip Adrianus Herry Heriadi |
| Author_xml | – sequence: 1 surname: Hanna Arini Parhusip fullname: Hanna Arini Parhusip – sequence: 2 surname: Suryasatriya Trihandaru fullname: Suryasatriya Trihandaru – sequence: 3 surname: Bambang Susanto fullname: Bambang Susanto – sequence: 4 surname: Johanes Dian Kurniawan fullname: Johanes Dian Kurniawan – sequence: 5 surname: Adrianus Herry Heriadi fullname: Adrianus Herry Heriadi – sequence: 6 surname: Petrus Priyo Santosa fullname: Petrus Priyo Santosa – sequence: 7 surname: Yohanes Sardjono fullname: Yohanes Sardjono |
| BookMark | eNotkE1OwzAQhS0EElB6By_bRYKdOI2zTFN-Cm2p1O6tiWODpdSJYhfUo3BbXGA1o3lv5o2-W3RpO6sQwpTECeMsvV-9viz3yzghCYs_aRYbksQ9oRfoJskYjTKeJpehJ5xHNAyu0dg5UxPG8ozOOLtB3wtlnfGnaA5ONXjXgzfQ4qo9Oq8GY99xp3HZ962RQemsw1_Gf-BNZ5zCk8V8V5WbKQbb4G1wS9Ofl7tDH_60HpcW2pMzDk-2VTnFuhvwFgZv5LEFr_AafAgJ4noarN0hmPFCeSXPSXfoSkPr1Pi_jtD-8WFfPUert6dlVa4iWRQ04hIU8BQyoGk-Y5TqtC7SOtOMMeCQFwXMeE543dBGci1rxZtGUakBMsnzJh0h_ndWDp1zg9KiH8wBhpOgRPxCFn-QxRmyCJBFgCwC5PQHAx11og |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.24843/LKJITI.2024.v15.i02.p01 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2541-5832 |
| EndPage | 86 |
| ExternalDocumentID | 10_24843_LKJITI_2024_v15_i02_p01 |
| GroupedDBID | 5VS AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ |
| ID | FETCH-LOGICAL-c991-8caea83a5a1376411f3b93b5f444a8a799a68708bd1dc8fcbe8dde1cfaa5c87d3 |
| ISSN | 2088-1541 |
| IngestDate | Sat Oct 25 05:45:22 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c991-8caea83a5a1376411f3b93b5f444a8a799a68708bd1dc8fcbe8dde1cfaa5c87d3 |
| OpenAccessLink | https://doi.org/10.24843/lkjiti.2024.v15.i02.p01 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_24843_LKJITI_2024_v15_i02_p01 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-12 |
| PublicationDateYYYYMMDD | 2025-10-12 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-12 day: 12 |
| PublicationDecade | 2020 |
| PublicationTitle | Lontar komputer |
| PublicationYear | 2025 |
| SSID | ssib044751684 ssj0001920588 |
| Score | 2.3059776 |
| Snippet | This research addresses a critical issue in industrial environments: air quality, specifically regarding PM 1.0 and PM 2.5. High concentrations of these... |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 75 |
| Title | Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Principal Component Analysis (PCA) for Particulate Matter (PM) Anomaly Detection |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2541-5832 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001920588 issn: 2088-1541 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2541-5832 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044751684 issn: 2088-1541 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VwoELb8Sz2gOHRpGDn_H66KZFlCZRJHLozVrbazXQ2FZih-bC_-DfMrO7dhwE4iFxiRw_RpvM55nx-JsZQt7YIvOExwG8wncN1_cTg5tiCFsJS5HdlGayZf7Yn07Z5WUwO7hFmlqYzbWf5-zmJij_q6phHygbS2f_Qt2tUNgB26B0-AS1w-cfKf4UKenV1jgB_wTBJDKmMUFwXWNLBM1xDjuvrVUqdlos1jLcPD35OAqnmCxQdQQyFy8zDMuyyJE50PYxgbNnoxBPRa7iTK4Fp4HhOCMsEpInTPB4mBdLuAisWyWpX3k3Jh4XecVX_c96vsTOJuY574f4hgllX9VrRbdWr7BWW77G6QJb3p-vFlcyH1Lv0rLLmGOncaQcVUWHJcTBsoOZB6N2UWNB2hd9c-i8hy37pVqdVKgN9tGAAFAhU6h98BXryPbtu9fBsd0x1mpkS-P2hz9zKLbLXOxsMb74cD4_H8A63MHG8gYL0x6UOguz18P7B9_aMh7hWUvKipSkCCVFICkCSVGJBYi3bd8LkJQ4-XrWWETsxmgNdSXxJxWPm54cptr-fEVPk8Lf_mKZnZirEzzNH5B7-qmHhgqtD8mByB-R-81EEaodzGPybQ-8VIOX7sBLi4x2wUsRvFSClx4r6PYogIG2wKUtcGkDXHoMsO1RAC3tgJYq0MLBSY9qwNIWsE_I_N3ZfPTe0MNDjATJfCzhgjOHe9wCF-paVubEgRN7meu6nHE_CPgQXBWLUytNWJbEgoGjt5KMcy9hfuo8JYc5LO4ZocxxsCJOeAGHa4XD44CZsTC5I1LT99lzYjX_blSqFjHR79T94h-ueUnu7u6DV-SwWtXiNbmTbKrFenUkk0lHEj3fAYEXupc |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Density-Based+Spatial+Clustering+of+Applications+with+Noise+%28DBSCAN%29+and+Principal+Component+Analysis+%28PCA%29+for+Particulate+Matter+%28PM%29+Anomaly+Detection&rft.jtitle=Lontar+komputer&rft.au=Hanna+Arini+Parhusip&rft.au=Suryasatriya+Trihandaru&rft.au=Bambang+Susanto&rft.au=Johanes+Dian+Kurniawan&rft.date=2025-10-12&rft.issn=2088-1541&rft.eissn=2541-5832&rft.volume=15&rft.issue=2&rft.spage=75&rft.epage=86&rft_id=info:doi/10.24843%2FLKJITI.2024.v15.i02.p01&rft.externalDBID=n%2Fa&rft.externalDocID=10_24843_LKJITI_2024_v15_i02_p01 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2088-1541&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2088-1541&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2088-1541&client=summon |