Parkinson's Disease Prediction Using Deep Learning Classification Algorithms

complaints arising from neurological disorders continue to increase today. At the same time, studies on diagnosis and treatment methods in medicine are increasing as technology advances. With the increasing interest in these areas, studies have been carried out on various diagnosis and follow-up sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Ukrainian Scientific Medical Youth Journal Jg. 152; H. 1; S. 92 - 96
Hauptverfasser: Kayacioglu, Rumeysa, Kaсar, Fırat
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 25.02.2025
ISSN:2311-6951, 1996-353X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract complaints arising from neurological disorders continue to increase today. At the same time, studies on diagnosis and treatment methods in medicine are increasing as technology advances. With the increasing interest in these areas, studies have been carried out on various diagnosis and follow-up systems related to Parkinson's disease. For this purpose, in this study, we studied the classification of a data set consisting of various voice recordings for each patient with the designed deep learning architecture in order to assist in the more objective diagnosis of Parkinson's disease. Although it is important for the estimation of the study to find different sound samples of each subject in the data set, it is not known how much these recordings represent all the sound recordings of the person. Recurrent neural networks, which are a deep learning architecture, are an efficient system that can achieve high success in voice data and can be preferred in the diagnosis and follow-up of Parkinson's disease. However, this study showed that in such a network design, much larger and more diverse data are needed to increase the classification rate, to make more accurate predictions in the field of medicine, and to make remote diagnosis.
AbstractList complaints arising from neurological disorders continue to increase today. At the same time, studies on diagnosis and treatment methods in medicine are increasing as technology advances. With the increasing interest in these areas, studies have been carried out on various diagnosis and follow-up systems related to Parkinson's disease. For this purpose, in this study, we studied the classification of a data set consisting of various voice recordings for each patient with the designed deep learning architecture in order to assist in the more objective diagnosis of Parkinson's disease. Although it is important for the estimation of the study to find different sound samples of each subject in the data set, it is not known how much these recordings represent all the sound recordings of the person. Recurrent neural networks, which are a deep learning architecture, are an efficient system that can achieve high success in voice data and can be preferred in the diagnosis and follow-up of Parkinson's disease. However, this study showed that in such a network design, much larger and more diverse data are needed to increase the classification rate, to make more accurate predictions in the field of medicine, and to make remote diagnosis.
Author Kayacioglu, Rumeysa
Kaсar, Fırat
Author_xml – sequence: 1
  givenname: Rumeysa
  orcidid: 0000-0003-1829-9947
  surname: Kayacioglu
  fullname: Kayacioglu, Rumeysa
– sequence: 2
  givenname: Fırat
  surname: Kaсar
  fullname: Kaсar, Fırat
BookMark eNot0E9LwzAYBvAgE5xz36E39dCa5G2yvsfR-ZeKAzfQU0jSdAa7dCS7-O3dpqeHBx6ew--SjMIQHCEZowVwKMXd-v3186VgN0zw24JTLgrkOcozMmaIMgcBHyMy5sBYLlGwCzJNyRtKhaQVSD4mzVLHbx_SEK5TtvDJ6eSyZXStt3s_hGydfNhkC-d2WeN0DMdW9_rw0nmrT5N5vxmi339t0xU573Sf3PQ_J2T1cL-qn_Lm7fG5nje5xUrmlWZWClMZbC1yg6YFLEturDXYSTnjEmamo2AYN052pkTQQiMrmXEgsIUJqf5ubRxSiq5Tu-i3Ov4oRtXJRZ1cFFMHF6WOLgq5Qgm_VoVaJQ
Cites_doi 10.21437/Interspeech.2011-720
10.1109/5.58326
10.1016/j.bandc.2004.05.002
10.1002/mds.10248
10.1002/mds.21899
10.1016/j.promfg.2019.06.205
10.1162/neco.1997.9.8.1735
10.1162/089976600300015015
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.32345/USMYJ.1(152).2025.92-96
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 1996-353X
EndPage 96
ExternalDocumentID 10_32345_USMYJ_1_152__2025_92_96
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
ID FETCH-LOGICAL-c986-8a1c65b8b9dc92b9bd39442bccb9f6672637bf03b12be6fb493a5a9141be359d3
ISSN 2311-6951
IngestDate Sat Nov 29 08:17:54 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c986-8a1c65b8b9dc92b9bd39442bccb9f6672637bf03b12be6fb493a5a9141be359d3
ORCID 0000-0003-1829-9947
OpenAccessLink https://mmj.nmuofficial.com/index.php/journal/article/download/480/435
PageCount 5
ParticipantIDs crossref_primary_10_32345_USMYJ_1_152__2025_92_96
PublicationCentury 2000
PublicationDate 2025-02-25
PublicationDateYYYYMMDD 2025-02-25
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-25
  day: 25
PublicationDecade 2020
PublicationTitle The Ukrainian Scientific Medical Youth Journal
PublicationYear 2025
References 10480
10471
10482
10481
10473
10472
10483
10475
10474
10477
10476
10479
10478
References_xml – ident: 10476
  doi: 10.21437/Interspeech.2011-720
– ident: 10480
  doi: 10.1109/5.58326
– ident: 10475
  doi: 10.1016/j.bandc.2004.05.002
– ident: 10471
– ident: 10473
  doi: 10.1002/mds.10248
– ident: 10474
  doi: 10.1002/mds.21899
– ident: 10477
– ident: 10472
– ident: 10479
– ident: 10478
– ident: 10483
  doi: 10.1016/j.promfg.2019.06.205
– ident: 10481
  doi: 10.1162/neco.1997.9.8.1735
– ident: 10482
  doi: 10.1162/089976600300015015
SSID ssib005608362
ssib044763810
Score 2.2836862
Snippet complaints arising from neurological disorders continue to increase today. At the same time, studies on diagnosis and treatment methods in medicine are...
SourceID crossref
SourceType Index Database
StartPage 92
Title Parkinson's Disease Prediction Using Deep Learning Classification Algorithms
Volume 152
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-353X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044763810
  issn: 2311-6951
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxELVC4cAFgQDx0SIfqICDS-xde3eOhbZCqK2QSKX2ZK293hCINlGSVu2FH8KvZWzvRyhIfEhcVtFGGW3y3j7PxjNvCHkOlRW8lClzlVMszaRhgCsFy4ZlZVAMQUSkD7Pj4_z0FD4MBt_aXpiLaVbX-eUlzP8r1HgOwfats38BdxcUT-BrBB2PCDse_wh438fctHRlS--u6TdgfKlFOYljwWOVwJ5z89ZddRxnY_qqociH3el4tpisPjVW5p97Sp18CTMlWlUIlUbdbs-Zn8fX7nB3Ul5cFXYyG0_PA5yohVfLon9ze49jNhvLvA98avuGIynX_4wQsblb9pqF2SJnChoPWRc11dc5JzKM_e1FV4qf2BUlNI7GaxbjOO32uswnIkm9JcbJx6Oz9zvcO1pJsS1835GQOyAY_MJd-9qq19Ui4lNQiKdDNM01xtLaR9IgNKgb5KbIJHjFPPq632uX8r7eXWqYpijUeTC_6H6DWDgWgr9uLvUlBn-1dplr2dBaWjO6S-40WNHdyKN7ZODq--Sw49CLJW0YRHsG0cAg6hlEWwbRHxlEewY9IKOD_dHbd6wZu8Es5IrlBbdKmtxAaUEYMKXvnRbGWgOVUplQSWaqYWK4ME7hDQ1JIQvgKTcukVAmD8lGPavdI0IxeRw6Lq2TKd73xmEwjGq8wVIheTV8THj77fU8mqvo38Hx5B8-85Tc7sm6STZWi3O3RW7Zi9VkuXgWcP0OjQJv-g
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parkinson%27s+Disease+Prediction+Using+Deep+Learning+Classification+Algorithms&rft.jtitle=The+Ukrainian+Scientific+Medical+Youth+Journal&rft.au=Kayacioglu%2C+Rumeysa&rft.au=Ka%D1%81ar%2C+F%C4%B1rat&rft.date=2025-02-25&rft.issn=2311-6951&rft.eissn=1996-353X&rft.volume=152&rft.issue=1&rft.spage=92&rft.epage=96&rft_id=info:doi/10.32345%2FUSMYJ.1%28152%29.2025.92-96&rft.externalDBID=n%2Fa&rft.externalDocID=10_32345_USMYJ_1_152__2025_92_96
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6951&client=summon