Parkinson's Disease Prediction Using Deep Learning Classification Algorithms
complaints arising from neurological disorders continue to increase today. At the same time, studies on diagnosis and treatment methods in medicine are increasing as technology advances. With the increasing interest in these areas, studies have been carried out on various diagnosis and follow-up sys...
Uloženo v:
| Vydáno v: | The Ukrainian Scientific Medical Youth Journal Ročník 152; číslo 1; s. 92 - 96 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
25.02.2025
|
| ISSN: | 2311-6951, 1996-353X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | complaints arising from neurological disorders continue to increase today. At the same time, studies on diagnosis and treatment methods in medicine are increasing as technology advances. With the increasing interest in these areas, studies have been carried out on various diagnosis and follow-up systems related to Parkinson's disease. For this purpose, in this study, we studied the classification of a data set consisting of various voice recordings for each patient with the designed deep learning architecture in order to assist in the more objective diagnosis of Parkinson's disease. Although it is important for the estimation of the study to find different sound samples of each subject in the data set, it is not known how much these recordings represent all the sound recordings of the person. Recurrent neural networks, which are a deep learning architecture, are an efficient system that can achieve high success in voice data and can be preferred in the diagnosis and follow-up of Parkinson's disease. However, this study showed that in such a network design, much larger and more diverse data are needed to increase the classification rate, to make more accurate predictions in the field of medicine, and to make remote diagnosis. |
|---|---|
| AbstractList | complaints arising from neurological disorders continue to increase today. At the same time, studies on diagnosis and treatment methods in medicine are increasing as technology advances. With the increasing interest in these areas, studies have been carried out on various diagnosis and follow-up systems related to Parkinson's disease. For this purpose, in this study, we studied the classification of a data set consisting of various voice recordings for each patient with the designed deep learning architecture in order to assist in the more objective diagnosis of Parkinson's disease. Although it is important for the estimation of the study to find different sound samples of each subject in the data set, it is not known how much these recordings represent all the sound recordings of the person. Recurrent neural networks, which are a deep learning architecture, are an efficient system that can achieve high success in voice data and can be preferred in the diagnosis and follow-up of Parkinson's disease. However, this study showed that in such a network design, much larger and more diverse data are needed to increase the classification rate, to make more accurate predictions in the field of medicine, and to make remote diagnosis. |
| Author | Kayacioglu, Rumeysa Kaсar, Fırat |
| Author_xml | – sequence: 1 givenname: Rumeysa orcidid: 0000-0003-1829-9947 surname: Kayacioglu fullname: Kayacioglu, Rumeysa – sequence: 2 givenname: Fırat surname: Kaсar fullname: Kaсar, Fırat |
| BookMark | eNot0E9LwzAYBvAgE5xz36E39dCa5G2yvsfR-ZeKAzfQU0jSdAa7dCS7-O3dpqeHBx6ew--SjMIQHCEZowVwKMXd-v3186VgN0zw24JTLgrkOcozMmaIMgcBHyMy5sBYLlGwCzJNyRtKhaQVSD4mzVLHbx_SEK5TtvDJ6eSyZXStt3s_hGydfNhkC-d2WeN0DMdW9_rw0nmrT5N5vxmi339t0xU573Sf3PQ_J2T1cL-qn_Lm7fG5nje5xUrmlWZWClMZbC1yg6YFLEturDXYSTnjEmamo2AYN052pkTQQiMrmXEgsIUJqf5ubRxSiq5Tu-i3Ov4oRtXJRZ1cFFMHF6WOLgq5Qgm_VoVaJQ |
| Cites_doi | 10.21437/Interspeech.2011-720 10.1109/5.58326 10.1016/j.bandc.2004.05.002 10.1002/mds.10248 10.1002/mds.21899 10.1016/j.promfg.2019.06.205 10.1162/neco.1997.9.8.1735 10.1162/089976600300015015 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.32345/USMYJ.1(152).2025.92-96 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1996-353X |
| EndPage | 96 |
| ExternalDocumentID | 10_32345_USMYJ_1_152__2025_92_96 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION M~E |
| ID | FETCH-LOGICAL-c986-8a1c65b8b9dc92b9bd39442bccb9f6672637bf03b12be6fb493a5a9141be359d3 |
| ISSN | 2311-6951 |
| IngestDate | Sat Nov 29 08:17:54 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c986-8a1c65b8b9dc92b9bd39442bccb9f6672637bf03b12be6fb493a5a9141be359d3 |
| ORCID | 0000-0003-1829-9947 |
| OpenAccessLink | https://mmj.nmuofficial.com/index.php/journal/article/download/480/435 |
| PageCount | 5 |
| ParticipantIDs | crossref_primary_10_32345_USMYJ_1_152__2025_92_96 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-25 |
| PublicationDateYYYYMMDD | 2025-02-25 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationTitle | The Ukrainian Scientific Medical Youth Journal |
| PublicationYear | 2025 |
| References | 10480 10471 10482 10481 10473 10472 10483 10475 10474 10477 10476 10479 10478 |
| References_xml | – ident: 10476 doi: 10.21437/Interspeech.2011-720 – ident: 10480 doi: 10.1109/5.58326 – ident: 10475 doi: 10.1016/j.bandc.2004.05.002 – ident: 10471 – ident: 10473 doi: 10.1002/mds.10248 – ident: 10474 doi: 10.1002/mds.21899 – ident: 10477 – ident: 10472 – ident: 10479 – ident: 10478 – ident: 10483 doi: 10.1016/j.promfg.2019.06.205 – ident: 10481 doi: 10.1162/neco.1997.9.8.1735 – ident: 10482 doi: 10.1162/089976600300015015 |
| SSID | ssib005608362 ssib044763810 |
| Score | 2.2836862 |
| Snippet | complaints arising from neurological disorders continue to increase today. At the same time, studies on diagnosis and treatment methods in medicine are... |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 92 |
| Title | Parkinson's Disease Prediction Using Deep Learning Classification Algorithms |
| Volume | 152 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-353X dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044763810 issn: 2311-6951 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FwoFLBQLEoyAfqICDS3f2Ye-x0FYItRUSKWpP1q69SQNREiVp1V74IfxaZnb9CAWJh8TFshx55OT79Hk2O_MNY88hzyvpQaYSwKeSS0tFADYVnlsnYdtUwafg00F2dJSfnJgPvd63phfmYpxNJvnlpZn9V6jxGoJNrbN_AXcbFC_gOYKOR4Qdj38EPPUx1y1d2YLcNWkDhkotqlEcCx6rBHa9nzXuqsM4G5OqhiIfdsbD6Xy0PKutzD93lDr-EmZKNKoQKo3a3Z5TmsfX7HC3Um6vbDmaDsfnAU7UwquF7T7c3OWYzcYy731Kbd9wJOXqnxEQm7tVp1mYLfJUm9pD1kdNpTpnocLY3050FfzEriihcTRe_TKO026vy7wAIckS4_jj4en7LU6OVgo2gfqOQG0ZSM0v3LWvvfXaWkRcBYV4RYhW8AJjFQVFKgwURt9gNyFThhTz8Otep12afL3b1FBKFOo8mF-0v0EsHAvBX9eP-hKDv1p5zJVsaCWt6d9h6zVWyU7k0V3W85N77KDl0ItFUjMo6RiUBAYlxKCkYVDyI4OSjkH3WX9_r__2XVqP3UhLk-s0t7zUyuXOVKUBZ1xFvdPgytKZgdYZaJG5wbZwHJzXAyeNsMoaLrnzQplKPGBrk-nEP2SJFpXH9QDmnJmWpQWbVQOyh1I6w2U6148Yb759MYvmKsXv4Hj8D_c8Ybc7sm6wteX83D9lt8qL5WgxfxZw_Q6ikW6j |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parkinson%27s+Disease+Prediction+Using+Deep+Learning+Classification+Algorithms&rft.jtitle=The+Ukrainian+Scientific+Medical+Youth+Journal&rft.au=Kayacioglu%2C+Rumeysa&rft.au=Ka%D1%81ar%2C+F%C4%B1rat&rft.date=2025-02-25&rft.issn=2311-6951&rft.eissn=1996-353X&rft.volume=152&rft.issue=1&rft.spage=92&rft.epage=96&rft_id=info:doi/10.32345%2FUSMYJ.1%28152%29.2025.92-96&rft.externalDBID=n%2Fa&rft.externalDocID=10_32345_USMYJ_1_152__2025_92_96 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6951&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6951&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6951&client=summon |