Four-operator reflected forward-backward algorithm for solving monotone inclusions involving Lipschitzian operator

In this work, using a discretisation of continuous-time dynamical systems, we design a novel splitting algorithm without the lifting technique for finding the sum of three maximal monotone operators and a monotone operator with Lipschitz continuity. In theory, we analyze the weak and strong converge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation Jg. 153; S. 109485
Hauptverfasser: Cao, Yu, Wang, Yuanheng, Ur Rehman, Habib, Shehu, Yekini, Yao, Jen-Chih
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.02.2026
Schlagworte:
ISSN:1007-5704
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, using a discretisation of continuous-time dynamical systems, we design a novel splitting algorithm without the lifting technique for finding the sum of three maximal monotone operators and a monotone operator with Lipschitz continuity. In theory, we analyze the weak and strong convergence of the proposed splitting algorithm and show the sublinear convergence rate. The practical efficacy of the proposed algorithm is validated through image restoration experiments, where it outperforms existing methods.
ISSN:1007-5704
DOI:10.1016/j.cnsns.2025.109485