An Ensemble Learning Methodology to a Decision Tree Algorithm for Soil Type Classification Using Machine Learning

In this study, we focus on the classification of soil types in a specific region, employing a stacking ensemble learning approach with the decision tree algorithm. A significant portion of the population in rural areas relies heavily on agriculture for their livelihood, making agriculture the backbo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mapana Journal of Sciences Jg. 22; H. 3; S. 81 - 98
1. Verfasser: S, Sumanth
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Bengaluru CHRIST (Deemed to be University) 13.12.2023
ISSN:0975-3303, 0975-3303
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this study, we focus on the classification of soil types in a specific region, employing a stacking ensemble learning approach with the decision tree algorithm. A significant portion of the population in rural areas relies heavily on agriculture for their livelihood, making agriculture the backbone of our nation's economy. Understanding soil characteristics is critical for agricultural development as it profoundly influences crop productivity. Data mining techniques play a pivotal role in predicting soil types and assisting farmers in selecting the most suitable crops for cultivation. To address this agricultural challenge, we propose a novel method named "Stacking Ensemble Learning with the Decision Tree Model" for soil type classification. Our approach outperforms existing Decision Tree-based methods and exhibits unique advantages in solving complex soil classification problems. Our experimental results demonstrate the effectiveness of our approach in creating an optimal decision tree model for soil type classification. 
AbstractList In this study, we focus on the classification of soil types in a specific region, employing a stacking ensemble learning approach with the decision tree algorithm. A significant portion of the population in rural areas relies heavily on agriculture for their livelihood, making agriculture the backbone of our nation's economy. Understanding soil characteristics is critical for agricultural development as it profoundly influences crop productivity. Data mining techniques play a pivotal role in predicting soil types and assisting farmers in selecting the most suitable crops for cultivation. To address this agricultural challenge, we propose a novel method named "Stacking Ensemble Learning with the Decision Tree Model" for soil type classification. Our approach outperforms existing Decision Tree-based methods and exhibits unique advantages in solving complex soil classification problems. Our experimental results demonstrate the effectiveness of our approach in creating an optimal decision tree model for soil type classification.
In this study, we focus on the classification of soil types in a specific region, employing a stacking ensemble learning approach with the decision tree algorithm. A significant portion of the population in rural areas relies heavily on agriculture for their livelihood, making agriculture the backbone of our nation's economy. Understanding soil characteristics is critical for agricultural development as it profoundly influences crop productivity. Data mining techniques play a pivotal role in predicting soil types and assisting farmers in selecting the most suitable crops for cultivation. To address this agricultural challenge, we propose a novel method named "Stacking Ensemble Learning with the Decision Tree Model" for soil type classification. Our approach outperforms existing Decision Tree-based methods and exhibits unique advantages in solving complex soil classification problems. Our experimental results demonstrate the effectiveness of our approach in creating an optimal decision tree model for soil type classification. 
Author S, Sumanth
Author_xml – sequence: 1
  givenname: Sumanth
  surname: S
  fullname: S, Sumanth
BookMark eNpNkDtPwzAYRS1UJAp04B9YYmJI8TOxx6qUh1TEQJgtJ_nSukrs1k6H_ntKiwTTvcPRudK9RiMfPCB0R8mUsoLxx36Tpnk-FRdoTHQhM84JH_3rV2iS0oYQwmmhpGJjtJt5vPAJ-qoDvAQbvfMr_A7DOjShC6sDHgK2-Alql1zwuIwAeNatQnTDusdtiPgzuA6Xhy3geWdTcq2r7fDDfqWTy9Zr5__kt-iytV2CyW_eoPJ5Uc5fs-XHy9t8tsxqXYisyilRjdRKEdkIoTkVtG2AKQo1CA2UaS61sKyRVFvNlVCWVJZaZosKGstv0P1Zu41ht4c0mE3YR39cNJwRyWlOGDlSD2eqjiGlCK3ZRtfbeDCUmNOn5vipyXMj-DdRjmsC
ContentType Journal Article
Copyright 2023. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at http://journals.christuniversity.in/index.php/mapana/about
Copyright_xml – notice: 2023. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at http://journals.christuniversity.in/index.php/mapana/about
DBID AAYXX
CITATION
04Q
04W
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.12723/mjs.66.4
DatabaseName CrossRef
India Database
India Database: Science & Technology
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Indian Journals
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
Indian Journals: Science & Technology
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 0975-3303
EndPage 98
ExternalDocumentID 10_12723_mjs_66_4
GroupedDBID 04Q
AAYXX
ABUWG
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BENPR
CCPQU
CITATION
PHGZM
PHGZT
PIMPY
04W
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c974-b6108d598805d4493141fde281ece49e1293594a2d519a93848a0ba1a2a7beda3
IEDL.DBID BENPR
ISSN 0975-3303
IngestDate Mon Jun 30 07:56:48 EDT 2025
Sat Nov 29 08:06:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by-sa/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c974-b6108d598805d4493141fde281ece49e1293594a2d519a93848a0ba1a2a7beda3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3205316020?pq-origsite=%requestingapplication%
PQID 3205316020
PQPubID 4990797
PageCount 18
ParticipantIDs proquest_journals_3205316020
crossref_primary_10_12723_mjs_66_4
PublicationCentury 2000
PublicationDate 2023-12-13
PublicationDateYYYYMMDD 2023-12-13
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-13
  day: 13
PublicationDecade 2020
PublicationPlace Bengaluru
PublicationPlace_xml – name: Bengaluru
PublicationTitle Mapana Journal of Sciences
PublicationYear 2023
Publisher CHRIST (Deemed to be University)
Publisher_xml – name: CHRIST (Deemed to be University)
SSID ssj0003178582
Score 2.2407024
Snippet In this study, we focus on the classification of soil types in a specific region, employing a stacking ensemble learning approach with the decision tree...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 81
Title An Ensemble Learning Methodology to a Decision Tree Algorithm for Soil Type Classification Using Machine Learning
URI https://www.proquest.com/docview/3205316020
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: India Database (ProQuest)
  customDbUrl:
  eissn: 0975-3303
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003178582
  issn: 0975-3303
  databaseCode: 04Q
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/indianjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 0975-3303
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003178582
  issn: 0975-3303
  databaseCode: BENPR
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 0975-3303
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003178582
  issn: 0975-3303
  databaseCode: PIMPY
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4EPHjxR9SIImmM18HWdt16MqgQTYRMJQZPS7d1iIEN2PTvty1FwsWLl-2wpFnee3v93uu39wFwbUcktSnnFvEQkZfUthhxuSVDxUkpExTp_9benrzBwB-NWGAaboWhVa5zok7USR6rHnkbIxUuVKKbm_nCUqpR6nTVSGhUQE1NKiNVULvtDoKX3y4LVuLzPjIjhZCHcHv2WbQobZHtjWg7D-vNpXfw39c6BPsGVsLOKg6OwI7IjsGik8FuVohZNBXQDFIdw77WjNbddFjmkMN7I7MDh0shYGc6luuXHzMo4Sx8zSdTqGpVqNUzFa9IuxJqqgHsayrmZvETMOx1h3cPlpFYsGJZSFiRBE9-4jLpGTchhGGHOGkikO-IWBAmFBhwGeEokUCPM-wTn9sRdzjiXiQSjk9BNcszcQZg7CU44pGseFNB1OmnLEwdnhDXTWMeY14HV2tzh_PVII1QFSDKJ6H0SUhpSOqgsbZyaL6lItyY-PzvxxdgT4nBK7KJgxugWi6_xCXYjb_LSbFsgopNnpsmQOQ9eOwH7z-Picd4
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2xSXBhESDKOkJwDCS2sx0QqljUirYCUSFulpM4pahNlxQQH8U_YrsJiAs3DlxyiWTFmadZPM_zAI7siKW2J4TFfMLUI7WtkLnCUlBxUi-UHjH31h4afqsVPD6GtzPwUd6F0bTK0icaR50MYn1GfkqJhounspvz4cjSqlG6u1pKaExhcSPf31TJlp_VL5V9jwm5vmpf1KxCVcCKVe5sRSpfCBI3VB_jJoyF1GFOmkgSODKWLJQ6_rkhEyRRuY0IacACYUfCEUT4kUwEVcvOwrxmk2jBBJvdfR3pUK10H5BifhHxCT3tP-cnnnfCfka9n07fRLLrlX_2D1ZhuUiZsTrF-BrMyGwdRtUMr7Jc9qOexGJIbAebRg_bdApwMkCBl4WEELbHUmK111HbmTz1UaXqeD_o9lDX4WiUQTVnysAUDY0Cm4Zm-r34BrT_YpObMJcNMrkFGPsJjUSkqvlUMt3ZVUW3IxLmumksYioqcFhalw-nQ0K4Lq40BLiCAPc8ziqwWxqVF34i598W3f799QEs1trNBm_UWzc7sKRF7zWpxqG7MDcZv8g9WIhfJ918vG8wicD_2P6fsuEdpA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Ensemble+Learning+Methodology+to+a+Decision+Tree+Algorithm+for+Soil+Type+Classification+Using+Machine+Learning&rft.jtitle=Mapana+Journal+of+Sciences&rft.au=Sumanth%2C+S&rft.date=2023-12-13&rft.pub=CHRIST+%28Deemed+to+be+University%29&rft.eissn=0975-3303&rft.volume=22&rft.issue=3&rft.spage=81&rft_id=info:doi/10.12723%2Fmjs.66.4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0975-3303&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0975-3303&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0975-3303&client=summon