An Ensemble Learning Methodology to a Decision Tree Algorithm for Soil Type Classification Using Machine Learning
In this study, we focus on the classification of soil types in a specific region, employing a stacking ensemble learning approach with the decision tree algorithm. A significant portion of the population in rural areas relies heavily on agriculture for their livelihood, making agriculture the backbo...
Gespeichert in:
| Veröffentlicht in: | Mapana Journal of Sciences Jg. 22; H. 3; S. 81 - 98 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Bengaluru
CHRIST (Deemed to be University)
13.12.2023
|
| ISSN: | 0975-3303, 0975-3303 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this study, we focus on the classification of soil types in a specific region, employing a stacking ensemble learning approach with the decision tree algorithm. A significant portion of the population in rural areas relies heavily on agriculture for their livelihood, making agriculture the backbone of our nation's economy. Understanding soil characteristics is critical for agricultural development as it profoundly influences crop productivity. Data mining techniques play a pivotal role in predicting soil types and assisting farmers in selecting the most suitable crops for cultivation. To address this agricultural challenge, we propose a novel method named "Stacking Ensemble Learning with the Decision Tree Model" for soil type classification. Our approach outperforms existing Decision Tree-based methods and exhibits unique advantages in solving complex soil classification problems. Our experimental results demonstrate the effectiveness of our approach in creating an optimal decision tree model for soil type classification. |
|---|---|
| AbstractList | In this study, we focus on the classification of soil types in a specific region, employing a stacking ensemble learning approach with the decision tree algorithm. A significant portion of the population in rural areas relies heavily on agriculture for their livelihood, making agriculture the backbone of our nation's economy. Understanding soil characteristics is critical for agricultural development as it profoundly influences crop productivity. Data mining techniques play a pivotal role in predicting soil types and assisting farmers in selecting the most suitable crops for cultivation. To address this agricultural challenge, we propose a novel method named "Stacking Ensemble Learning with the Decision Tree Model" for soil type classification. Our approach outperforms existing Decision Tree-based methods and exhibits unique advantages in solving complex soil classification problems. Our experimental results demonstrate the effectiveness of our approach in creating an optimal decision tree model for soil type classification. In this study, we focus on the classification of soil types in a specific region, employing a stacking ensemble learning approach with the decision tree algorithm. A significant portion of the population in rural areas relies heavily on agriculture for their livelihood, making agriculture the backbone of our nation's economy. Understanding soil characteristics is critical for agricultural development as it profoundly influences crop productivity. Data mining techniques play a pivotal role in predicting soil types and assisting farmers in selecting the most suitable crops for cultivation. To address this agricultural challenge, we propose a novel method named "Stacking Ensemble Learning with the Decision Tree Model" for soil type classification. Our approach outperforms existing Decision Tree-based methods and exhibits unique advantages in solving complex soil classification problems. Our experimental results demonstrate the effectiveness of our approach in creating an optimal decision tree model for soil type classification. |
| Author | S, Sumanth |
| Author_xml | – sequence: 1 givenname: Sumanth surname: S fullname: S, Sumanth |
| BookMark | eNpNkDtPwzAYRS1UJAp04B9YYmJI8TOxx6qUh1TEQJgtJ_nSukrs1k6H_ntKiwTTvcPRudK9RiMfPCB0R8mUsoLxx36Tpnk-FRdoTHQhM84JH_3rV2iS0oYQwmmhpGJjtJt5vPAJ-qoDvAQbvfMr_A7DOjShC6sDHgK2-Alql1zwuIwAeNatQnTDusdtiPgzuA6Xhy3geWdTcq2r7fDDfqWTy9Zr5__kt-iytV2CyW_eoPJ5Uc5fs-XHy9t8tsxqXYisyilRjdRKEdkIoTkVtG2AKQo1CA2UaS61sKyRVFvNlVCWVJZaZosKGstv0P1Zu41ht4c0mE3YR39cNJwRyWlOGDlSD2eqjiGlCK3ZRtfbeDCUmNOn5vipyXMj-DdRjmsC |
| ContentType | Journal Article |
| Copyright | 2023. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at http://journals.christuniversity.in/index.php/mapana/about |
| Copyright_xml | – notice: 2023. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at http://journals.christuniversity.in/index.php/mapana/about |
| DBID | AAYXX CITATION 04Q 04W ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
| DOI | 10.12723/mjs.66.4 |
| DatabaseName | CrossRef India Database India Database: Science & Technology ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Indian Journals ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea Indian Journals: Science & Technology ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 0975-3303 |
| EndPage | 98 |
| ExternalDocumentID | 10_12723_mjs_66_4 |
| GroupedDBID | 04Q AAYXX ABUWG AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARCSS BENPR CCPQU CITATION PHGZM PHGZT PIMPY 04W AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c974-b6108d598805d4493141fde281ece49e1293594a2d519a93848a0ba1a2a7beda3 |
| IEDL.DBID | BENPR |
| ISSN | 0975-3303 |
| IngestDate | Mon Jun 30 07:56:48 EDT 2025 Sat Nov 29 08:06:55 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://creativecommons.org/licenses/by-sa/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c974-b6108d598805d4493141fde281ece49e1293594a2d519a93848a0ba1a2a7beda3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3205316020?pq-origsite=%requestingapplication% |
| PQID | 3205316020 |
| PQPubID | 4990797 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_3205316020 crossref_primary_10_12723_mjs_66_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-13 |
| PublicationDateYYYYMMDD | 2023-12-13 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-13 day: 13 |
| PublicationDecade | 2020 |
| PublicationPlace | Bengaluru |
| PublicationPlace_xml | – name: Bengaluru |
| PublicationTitle | Mapana Journal of Sciences |
| PublicationYear | 2023 |
| Publisher | CHRIST (Deemed to be University) |
| Publisher_xml | – name: CHRIST (Deemed to be University) |
| SSID | ssj0003178582 |
| Score | 2.2407024 |
| Snippet | In this study, we focus on the classification of soil types in a specific region, employing a stacking ensemble learning approach with the decision tree... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 81 |
| Title | An Ensemble Learning Methodology to a Decision Tree Algorithm for Soil Type Classification Using Machine Learning |
| URI | https://www.proquest.com/docview/3205316020 |
| Volume | 22 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: India Database (ProQuest) customDbUrl: eissn: 0975-3303 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003178582 issn: 0975-3303 databaseCode: 04Q dateStart: 20020101 isFulltext: true titleUrlDefault: https://search.proquest.com/indianjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 0975-3303 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003178582 issn: 0975-3303 databaseCode: BENPR dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 0975-3303 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003178582 issn: 0975-3303 databaseCode: PIMPY dateStart: 20020101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4EPHjxR9SIImmM18HWdt16MqgQTYRMJQZPS7d1iIEN2PTvty1FwsWLl-2wpFnee3v93uu39wFwbUcktSnnFvEQkZfUthhxuSVDxUkpExTp_9benrzBwB-NWGAaboWhVa5zok7USR6rHnkbIxUuVKKbm_nCUqpR6nTVSGhUQE1NKiNVULvtDoKX3y4LVuLzPjIjhZCHcHv2WbQobZHtjWg7D-vNpXfw39c6BPsGVsLOKg6OwI7IjsGik8FuVohZNBXQDFIdw77WjNbddFjmkMN7I7MDh0shYGc6luuXHzMo4Sx8zSdTqGpVqNUzFa9IuxJqqgHsayrmZvETMOx1h3cPlpFYsGJZSFiRBE9-4jLpGTchhGGHOGkikO-IWBAmFBhwGeEokUCPM-wTn9sRdzjiXiQSjk9BNcszcQZg7CU44pGseFNB1OmnLEwdnhDXTWMeY14HV2tzh_PVII1QFSDKJ6H0SUhpSOqgsbZyaL6lItyY-PzvxxdgT4nBK7KJgxugWi6_xCXYjb_LSbFsgopNnpsmQOQ9eOwH7z-Picd4 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2xSXBhESDKOkJwDCS2sx0QqljUirYCUSFulpM4pahNlxQQH8U_YrsJiAs3DlxyiWTFmadZPM_zAI7siKW2J4TFfMLUI7WtkLnCUlBxUi-UHjH31h4afqsVPD6GtzPwUd6F0bTK0icaR50MYn1GfkqJhounspvz4cjSqlG6u1pKaExhcSPf31TJlp_VL5V9jwm5vmpf1KxCVcCKVe5sRSpfCBI3VB_jJoyF1GFOmkgSODKWLJQ6_rkhEyRRuY0IacACYUfCEUT4kUwEVcvOwrxmk2jBBJvdfR3pUK10H5BifhHxCT3tP-cnnnfCfka9n07fRLLrlX_2D1ZhuUiZsTrF-BrMyGwdRtUMr7Jc9qOexGJIbAebRg_bdApwMkCBl4WEELbHUmK111HbmTz1UaXqeD_o9lDX4WiUQTVnysAUDY0Cm4Zm-r34BrT_YpObMJcNMrkFGPsJjUSkqvlUMt3ZVUW3IxLmumksYioqcFhalw-nQ0K4Lq40BLiCAPc8ziqwWxqVF34i598W3f799QEs1trNBm_UWzc7sKRF7zWpxqG7MDcZv8g9WIhfJ918vG8wicD_2P6fsuEdpA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Ensemble+Learning+Methodology+to+a+Decision+Tree+Algorithm+for+Soil+Type+Classification+Using+Machine+Learning&rft.jtitle=Mapana+Journal+of+Sciences&rft.au=Sumanth%2C+S&rft.date=2023-12-13&rft.pub=CHRIST+%28Deemed+to+be+University%29&rft.eissn=0975-3303&rft.volume=22&rft.issue=3&rft.spage=81&rft_id=info:doi/10.12723%2Fmjs.66.4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0975-3303&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0975-3303&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0975-3303&client=summon |