Enhanced fault detection in digital VLSI circuits using convolutional autoencoders
As Very Large-Scale Integration (VLSI) technology advances, the demand for reliable and scalable pre-silicon fault detection (FD) techniques continues to grow. Conventional diagnostic methods often face limitations in identifying subtle stuck-at faults within complex and high-dimensional test data....
Gespeichert in:
| Veröffentlicht in: | Integration (Amsterdam) Jg. 107; S. 102608 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.03.2026
|
| Schlagworte: | |
| ISSN: | 0167-9260 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | As Very Large-Scale Integration (VLSI) technology advances, the demand for reliable and scalable pre-silicon fault detection (FD) techniques continues to grow. Conventional diagnostic methods often face limitations in identifying subtle stuck-at faults within complex and high-dimensional test data. This study proposes a deep learning-based fault detection framework that integrates unsupervised and supervised learning to enhance fault identification and classification in combinational circuits. A Convolutional Autoencoder (CAE) is employed to extract spatial and structural features from circuit test patterns, effectively reducing dimensionality while preserving fault-related information. The encoded features are then classified using a Random Forest model for precise fault localization. The proposed framework is validated on ISCAS’85 benchmark circuits of different sizes and complexities, achieving fault detection accuracies ranging from 93 % to 100 %. Notably, when compared to existing models such as SSAE, VAE, and CEAE, which recorded accuracies between 83 % to 98 %, the proposed CAE-Random Forest framework consistently outperformed them across all benchmarks. Furthermore, the model exhibited stable convergence, low reconstruction error, and efficient memory usage of about 380–403 MB, ensuring reliable and scalable performance. Overall, these results demonstrate that the framework offers a robust, high-accuracy, and resource-efficient solution for automatic fault detection in digital VLSI circuits. It can also be effectively extended to more complex architectures for improved diagnostic reliability.
•The proposed Convolutional Autoencoder (CAE) - Random Forest framework achieved 93–100 % fault detection accuracy across ISCAS’85 benchmark circuits, outperforming SSAE, VAE, and CEAE models (83–98 %).•The CAE-based approach reached 100 % accuracy on five benchmark circuits and improved the average detection accuracy (97.4 %) compared to SSAE (93.3 %), with superior precision, recall, and F1-scores.•The unsupervised CAE effectively reduced data dimensionality while preserving fault-related spatial patterns, enabling accurate detection of subtle stuck-at faults and reducing false negatives.•The model exhibited stable convergence, low reconstruction error, and efficient memory utilization (380–403 MB), confirming its scalability and suitability for complex VLSI architectures.•Future work will focus on real-time fault detection, noise resilience, and low-power hardware deployment to enhance the applicability of the CAE framework in next-generation nano-electronics circuit testing. |
|---|---|
| AbstractList | As Very Large-Scale Integration (VLSI) technology advances, the demand for reliable and scalable pre-silicon fault detection (FD) techniques continues to grow. Conventional diagnostic methods often face limitations in identifying subtle stuck-at faults within complex and high-dimensional test data. This study proposes a deep learning-based fault detection framework that integrates unsupervised and supervised learning to enhance fault identification and classification in combinational circuits. A Convolutional Autoencoder (CAE) is employed to extract spatial and structural features from circuit test patterns, effectively reducing dimensionality while preserving fault-related information. The encoded features are then classified using a Random Forest model for precise fault localization. The proposed framework is validated on ISCAS’85 benchmark circuits of different sizes and complexities, achieving fault detection accuracies ranging from 93 % to 100 %. Notably, when compared to existing models such as SSAE, VAE, and CEAE, which recorded accuracies between 83 % to 98 %, the proposed CAE-Random Forest framework consistently outperformed them across all benchmarks. Furthermore, the model exhibited stable convergence, low reconstruction error, and efficient memory usage of about 380–403 MB, ensuring reliable and scalable performance. Overall, these results demonstrate that the framework offers a robust, high-accuracy, and resource-efficient solution for automatic fault detection in digital VLSI circuits. It can also be effectively extended to more complex architectures for improved diagnostic reliability.
•The proposed Convolutional Autoencoder (CAE) - Random Forest framework achieved 93–100 % fault detection accuracy across ISCAS’85 benchmark circuits, outperforming SSAE, VAE, and CEAE models (83–98 %).•The CAE-based approach reached 100 % accuracy on five benchmark circuits and improved the average detection accuracy (97.4 %) compared to SSAE (93.3 %), with superior precision, recall, and F1-scores.•The unsupervised CAE effectively reduced data dimensionality while preserving fault-related spatial patterns, enabling accurate detection of subtle stuck-at faults and reducing false negatives.•The model exhibited stable convergence, low reconstruction error, and efficient memory utilization (380–403 MB), confirming its scalability and suitability for complex VLSI architectures.•Future work will focus on real-time fault detection, noise resilience, and low-power hardware deployment to enhance the applicability of the CAE framework in next-generation nano-electronics circuit testing. |
| ArticleNumber | 102608 |
| Author | Medisetti, Sanjay Savalam, Chandrasekhar Korapati, Prasanti |
| Author_xml | – sequence: 1 givenname: Chandrasekhar orcidid: 0000-0002-9909-761X surname: Savalam fullname: Savalam, Chandrasekhar email: csekhar.savalam@gmail.com organization: Department of ECE, Dhanekula Institute of Engineering & Technology, Ganguru, A.P, India – sequence: 2 givenname: Sanjay surname: Medisetti fullname: Medisetti, Sanjay organization: Department of ECE, Dhanekula Institute of Engineering & Technology, Ganguru, A.P, India – sequence: 3 givenname: Prasanti surname: Korapati fullname: Korapati, Prasanti organization: Department of EIE, VR Siddhartha Engineering College, Kanuru, A.P, India |
| BookMark | eNp9kN1KAzEQhXNRwbb6Al7lBbbmp9kf8EZK1UJB0OJtyE5ma8qaSLJb8O3NUq-9GmbmnGHOtyAzHzwScsfZijNe3p9W5z65lWBC5YEoWT0j87yoiiY312SR0okxxteVmpO3rf80HtDSzoz9QC0OCIMLnjpPrTu6wfT0Y_--o-AijG5IdEzOHykEfw79OEmzwoxDQA_BYkw35KozfcLbv7okh6ftYfNS7F-fd5vHfQFNWRdSiMZ0YJE1UlVr4Mq0pTIyj2rWdthKaUthW2lAVaiqmnUlb0GBYcwIXsolEZezEENKETv9Hd2XiT-aMz2B0Cc9gdATCH0BkU0PFxPmx84Oo07gcMrvYs6tbXD_2X8BLwBsrQ |
| Cites_doi | 10.2197/ipsjtsldm.7.46 10.1109/TIE.2015.2417501 10.1016/j.rser.2019.04.021 10.1007/s10601-015-9183-0 10.1007/978-3-030-45190-5_8 10.1109/TII.2018.2864759 10.1063/1.5033715 10.1016/j.procs.2021.10.065 10.1007/s10836-018-5747-4 10.1038/s41598-025-85223-8 10.1109/ISCAS.1989.100747 10.29007/sxzb 10.1109/ICM.2016.7847940 10.1016/S0026-2714(99)00203-6 10.1007/978-3-030-01090-4_9 10.1007/3-540-60385-9_11 10.1145/800157.805047 10.1145/1390156.1390294 10.1007/s10836-018-5716-y 10.1080/0952813X.2014.954274 10.1109/ICM48031.2019.9021938 10.1016/j.procs.2021.02.013 10.1016/j.rser.2022.112395 10.1007/s12652-020-02247-w 10.5121/csit.2020.101508 10.1007/978-3-319-59776-8_7 10.1016/j.chemolab.2022.104711 10.3390/s22010227 10.1109/ACCESS.2019.2963092 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. |
| Copyright_xml | – notice: 2025 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.vlsi.2025.102608 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_vlsi_2025_102608 S0167926025002652 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9DU 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABDPE ABFNM ABJNI ABMAC ABXDB ACDAQ ACGFS ACLOT ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AFJKZ AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIIUN AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K UHS WUQ XPP ZMT ~G- ~HD AAYXX CITATION |
| ID | FETCH-LOGICAL-c968-3229afcde093574c15ab65a3fcd80bfeb33d62db3ac57e5780f61bc5ca00a2163 |
| ISSN | 0167-9260 |
| IngestDate | Thu Nov 27 00:53:52 EST 2025 Wed Dec 10 14:27:08 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Contractive autoencoder Error debugging Stacked sparse autoencoders Variational autoencoder Convolutional autoencoder Digital VLSI circuits |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c968-3229afcde093574c15ab65a3fcd80bfeb33d62db3ac57e5780f61bc5ca00a2163 |
| ORCID | 0000-0002-9909-761X |
| ParticipantIDs | crossref_primary_10_1016_j_vlsi_2025_102608 elsevier_sciencedirect_doi_10_1016_j_vlsi_2025_102608 |
| PublicationCentury | 2000 |
| PublicationDate | March 2026 |
| PublicationDateYYYYMMDD | 2026-03-01 |
| PublicationDate_xml | – month: 03 year: 2026 text: March 2026 |
| PublicationDecade | 2020 |
| PublicationTitle | Integration (Amsterdam) |
| PublicationYear | 2026 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Liffiton, Previti, Malik, Marques-Silva (bib32) 2016; 21 Bendík, Černá (bib41) 2020 Rifai, Vincent, Muller, Glorot, Bengio (bib34) 2011 Leo, Tack (bib38) 2017 Bendík, Cerná (bib30) 2018 Chen, Zhang, Li, Shi, Gao, Hu (bib2) 2022; 161 Becker (bib37) 2018 Wang, Wang (bib6) 2022; 180 Lynce, Marques-Silva (bib24) 2001 Zhu, Jiang, Liu (bib33) 2022; 22 Shimakawa, Hagihara, Yonezaki (bib39) 2018 Dal Palù, Dovier, Formisano, Pontelli (bib26) 2015; 27 Zhao, Li, Zhang, Zhang (bib1) 2019; 109 Shiney, Seetharaman, Sharmila, Prathiba (bib7) 2025 Feb 8; 15 Gaber, Hussein, Moness (bib12) 2021; 182 Wahba, Borrione (bib18) 1995 Qian, Song, Yao, Zhu, Zhang (bib35) 2022; 231 Bryan (bib43) 1985; vol. 25 Gaber, Hussein, Moness (bib45) 2021; 194 Tang, Yuan, Zhu (bib5) 2020; 8 Arodytska, Bjørner, Marinescu, Sagiv (bib36) 2018 Brglez, Bryan, Kozminski (bib44) 1989 Osama, Gaber, Hussein, Mahmoud (bib13) 2018; 34 Ali, Hussein, Ali (bib25) 2016 Rashinkar, Paterson, Singh (bib9) 2007 Jo, Matsumoto, Fujita (bib8) 2014; 7 Cook (bib27) 1971 Vincent, Larochelle, Bengio, Manzagol (bib22) 2008 GuthmSSAE, Strichman, Trostanetski (bib31) 2016; 2016 Gaber, Hussein, Moness (bib10) 2019 Gaber, Hussein, Moness (bib11) 2020 Jutman, Ubar (bib17) 2000; 40 Gaber, Hussein, Mahmoud, Mabrook, Moness (bib16) 2020 Gaber, Hussein, Moness (bib28) 2020 Marques-Silva (bib40) 2012; 19 Shao, McAleer, Yan, Baldi (bib3) April 2019; 15 Baldi (bib21) 2012 Rodríguez Gómez (bib14) 2017 Ng (bib20) 2011; 72 Rifai, Vincent, Muller, Glorot, Bengio (bib23) 2011 Gao, Cecati, Ding (bib19) 2015; 62 Mehmood, Sher, Murtaza, Al-Haddad (bib4) 2021; 70 Bendík, Černá, Beneš (bib29) 2018 Selsam (bib42) 2019 El Mandouh, Wassal (bib15) 2018; 34 Gaber (10.1016/j.vlsi.2025.102608_bib12) 2021; 182 Ng (10.1016/j.vlsi.2025.102608_bib20) 2011; 72 10.1016/j.vlsi.2025.102608_bib41 Mehmood (10.1016/j.vlsi.2025.102608_bib4) 2021; 70 Liffiton (10.1016/j.vlsi.2025.102608_bib32) 2016; 21 Wang (10.1016/j.vlsi.2025.102608_bib6) 2022; 180 Shao (10.1016/j.vlsi.2025.102608_bib3) 2019; 15 Marques-Silva (10.1016/j.vlsi.2025.102608_bib40) 2012; 19 10.1016/j.vlsi.2025.102608_bib28 GuthmSSAE (10.1016/j.vlsi.2025.102608_bib31) 2016; 2016 10.1016/j.vlsi.2025.102608_bib29 10.1016/j.vlsi.2025.102608_bib27 Jo (10.1016/j.vlsi.2025.102608_bib8) 2014; 7 10.1016/j.vlsi.2025.102608_bib24 10.1016/j.vlsi.2025.102608_bib25 10.1016/j.vlsi.2025.102608_bib22 10.1016/j.vlsi.2025.102608_bib44 10.1016/j.vlsi.2025.102608_bib9 10.1016/j.vlsi.2025.102608_bib42 10.1016/j.vlsi.2025.102608_bib21 10.1016/j.vlsi.2025.102608_bib43 10.1016/j.vlsi.2025.102608_bib30 Chen (10.1016/j.vlsi.2025.102608_bib2) 2022; 161 Shiney (10.1016/j.vlsi.2025.102608_bib7) 2025; 15 Gaber (10.1016/j.vlsi.2025.102608_bib45) 2021; 194 Zhao (10.1016/j.vlsi.2025.102608_bib1) 2019; 109 Rifai (10.1016/j.vlsi.2025.102608_bib23) 2011 Tang (10.1016/j.vlsi.2025.102608_bib5) 2020; 8 Gao (10.1016/j.vlsi.2025.102608_bib19) 2015; 62 Osama (10.1016/j.vlsi.2025.102608_bib13) 2018; 34 Zhu (10.1016/j.vlsi.2025.102608_bib33) 2022; 22 10.1016/j.vlsi.2025.102608_bib39 10.1016/j.vlsi.2025.102608_bib18 Arodytska (10.1016/j.vlsi.2025.102608_bib36) 2018 10.1016/j.vlsi.2025.102608_bib37 10.1016/j.vlsi.2025.102608_bib16 10.1016/j.vlsi.2025.102608_bib38 10.1016/j.vlsi.2025.102608_bib14 Dal Palù (10.1016/j.vlsi.2025.102608_bib26) 2015; 27 Qian (10.1016/j.vlsi.2025.102608_bib35) 2022; 231 10.1016/j.vlsi.2025.102608_bib11 El Mandouh (10.1016/j.vlsi.2025.102608_bib15) 2018; 34 10.1016/j.vlsi.2025.102608_bib34 10.1016/j.vlsi.2025.102608_bib10 Jutman (10.1016/j.vlsi.2025.102608_bib17) 2000; 40 |
| References_xml | – volume: 231 year: 2022 ident: bib35 article-title: A review on autoencoder based representation learning for fault detection and diagnosis in industrial processes publication-title: Chemometr. Intell. Lab. Syst. – year: 2007 ident: bib9 article-title: Singh, system-on-achip Verification: Methodology and Techniques – volume: 109 start-page: 85 year: 2019 end-page: 101 ident: bib1 article-title: Artificial intelligence-based fault detection and diagnosis methods for building energy systems: advantages, challenges and the future publication-title: Renew. Sustain. Energy Rev. – start-page: 1096 year: 2008 end-page: 1103 ident: bib22 article-title: Extracting and composing robust features with denoising autoencoders publication-title: Proceedings of the 25th International Conference on Machine Learning – year: 2018 ident: bib39 article-title: Efficiency of the strong satisfiability checking procedure for reactive system specifications publication-title: Proceeding AIP Conference Pp 040051 – start-page: 143 year: 2018 end-page: 159 ident: bib29 article-title: Recursive online enumeration of all minimal unsatisfiable subsets publication-title: International Symposium on Automated Technology for Verification and Analysis – year: 2017 ident: bib14 article-title: Machine Learning Support for Logic Diagnosis – start-page: 1353 year: 2018 end-page: 1361 ident: bib36 article-title: CoreGuided minimal correction set and core enumeration publication-title: IJCAI – start-page: 833 year: 2011 end-page: 840 ident: bib34 article-title: Contractive auto-encoders: explicit invariance during feature extraction publication-title: Proceedings of the 28th International Conference on International Conference on Machine Learning (ICML'11) – year: 2016 ident: bib25 article-title: Parallelization of unit propagation algorithm for SAT-based ATPG of digital circuits publication-title: 2016 Proceeding 28th International Conference on Microelectronics (ICM) – year: 2020 ident: bib28 article-title: Fast auto-correction algorithm for digital VLSI circuits publication-title: Presented at the 17th International Learning & Technology Conference – start-page: 1 year: 2020 end-page: 19 ident: bib16 article-title: Computation of Minimal Unsatisfiable Subformulas for SAT-based Digital Circuit Error Diagnosis – start-page: 833 year: 2011 end-page: 840 ident: bib23 article-title: Contractive auto-encoders: explicit invariance during feature extraction publication-title: ICML-Proceedings of the 28th International Conference on Machine Learning, – volume: 27 start-page: 293 year: 2015 end-page: 316 ident: bib26 article-title: Cud@ sat: sat solving on gpus publication-title: J. Exp. Theor. Artif. Intell. – year: 2018 ident: bib37 article-title: Satisfiability-Based Methods for Digital Circuit Design, Debug, and Optimization – start-page: 18 year: 2019 end-page: 22 ident: bib10 article-title: Improved automatic correction for digital VLSI circuits publication-title: 2019 Proceeding 31st International Conference on Microelectronics (ICM) – volume: vol. 25 year: 1985 ident: bib43 publication-title: The ISCAS'85 Benchmark Circuits and Netlist Format – start-page: 1929 year: 1989 end-page: 1934 ident: bib44 article-title: Combinational profiles of sequential benchmark circuits publication-title: IEEE International Symposium on Circuits and Systems – start-page: 131 year: 2018 end-page: 142 ident: bib30 article-title: Evaluation of domain agnostic approaches for enumeration of minimal unsatisfiable subsets publication-title: LPAR – start-page: 37 year: 2012 end-page: 49 ident: bib21 article-title: Autoencoders, unsupervised learning, and deep architectures publication-title: Proceedings of ICML Workshop on Unsupervised and Transfer Learning – volume: 8 start-page: 9335 year: 2020 end-page: 9346 ident: bib5 article-title: Deep learning-based intelligent fault diagnosis methods toward rotating machinery publication-title: IEEE Access – start-page: 151 year: 1971 end-page: 158 ident: bib27 article-title: The complexity of theorem-proving procedures publication-title: Proceedings of the Third Ssaeual ACM Symposium on Theory of Computing – volume: 15 start-page: 2446 year: April 2019 end-page: 2455 ident: bib3 article-title: Highly accurate machine fault diagnosis using deep transfer learning publication-title: IEEE Trans. Ind. Inf. – volume: 70 start-page: 1 year: 2021 end-page: 12 ident: bib4 article-title: A diode-based fault detection, classification, and localization method for photovoltaic array publication-title: IEEE Trans. Instrum. Meas. – volume: 7 start-page: 46 year: 2014 end-page: 55 ident: bib8 article-title: SAT-based automatic rectification and debugging of combinational circuits with LUT insertions publication-title: IPSJ Transactions on System LSI Design Methodology – volume: 2016 start-page: 57 year: 2016 end-page: 64 ident: bib31 article-title: Minimal unsatisfiable core extraction for SMT publication-title: Formal Methods in Computer-Aided Design (FMCAD) – volume: 21 start-page: 223 year: 2016 end-page: 250 ident: bib32 article-title: Fast, flexible MUS enumeration publication-title: Constraints – start-page: 135 year: 2020 end-page: 152 ident: bib41 article-title: MUST: minimal unsatisfiable subsets enumeration tool publication-title: Proceeding International Conference on Tools and Algorithms for the Construction and Analysis of Systems – start-page: 77 year: 2017 end-page: 93 ident: bib38 article-title: Debugging unsatisfiable constraint models publication-title: Proceeding International Conference on AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems – volume: 19 year: 2012 ident: bib40 article-title: Computing minimally unsatisfiable subformulas: state of the art and future directions publication-title: J. Mult.-Valued Log. Soft Comput. – volume: 182 start-page: 95 year: 2021 end-page: 102 ident: bib12 article-title: Fast auto-correction algorithm for digital VLSI circuits publication-title: Procedia Comput. Sci. – volume: 161 year: 2022 ident: bib2 article-title: A review of computing-based automated fault detection and diagnosis of heating, ventilation and air conditioning systems publication-title: Renew. Sustain. Energy Rev. – volume: 15 start-page: 4776 year: 2025 Feb 8 ident: bib7 article-title: Deep learning based gasket fault detection: a CNN approach publication-title: Sci. Rep. – volume: 34 start-page: 511 year: 2018 end-page: 527 ident: bib13 article-title: An efficient SAT-based test generation algorithm with GPU accelerator publication-title: J. Electron. Test. – year: 2001 ident: bib24 article-title: Efficient Data Structures for Fast Sat Solvers – volume: 194 year: 2021 ident: bib45 article-title: Fault detection based on deep learning for digital VLSI circuits publication-title: Procedia Comput. Sci. – year: 2020 ident: bib11 article-title: Incremental automatic correction for digital VLSI circuits publication-title: Presented at the Proceceeding 11th International Conference on VLSI (VLSI 2020) – year: 2019 ident: bib42 article-title: Neural Networks and the Satisfiability Problem – volume: 22 start-page: 227 year: 2022 ident: bib33 article-title: Fault detection and diagnosis in industrial processes with variational autoencoder: a comprehensive study publication-title: Sensors – volume: 34 start-page: 163 year: 2018 end-page: 181 ident: bib15 article-title: Application of machine learning techniques in post-silicon debugging and bug localization publication-title: J. Electron. Test. – volume: 62 start-page: 3757 year: 2015 end-page: 3767 ident: bib19 article-title: A survey of fault diagnosis and faulttolerant techniques—Part I: fault diagnosis with model-based and signal-based approaches publication-title: IEEE Trans. Ind. Electron. – volume: 40 start-page: 307 year: 2000 end-page: 320 ident: bib17 article-title: Design error diagnosis in digital circuits with stuck-at fault model publication-title: Microelectron. Reliab. – start-page: 171 year: 1995 end-page: 188 ident: bib18 article-title: Design error diagnosis in sequential circuits publication-title: Proceeding Advanced Research Working Conference on Correct Hardware Design and Verification Methods – volume: 72 start-page: 1 year: 2011 end-page: 19 ident: bib20 article-title: Sparse autoencoder publication-title: CS294A Lecture notes – volume: 180 start-page: 123 year: 2022 end-page: 134 ident: bib6 article-title: Deep neural network approach for fault detection and diagnosis in rocket engine tests publication-title: Acta Astronaut. – volume: 7 start-page: 46 year: 2014 ident: 10.1016/j.vlsi.2025.102608_bib8 article-title: SAT-based automatic rectification and debugging of combinational circuits with LUT insertions publication-title: IPSJ Transactions on System LSI Design Methodology doi: 10.2197/ipsjtsldm.7.46 – volume: 62 start-page: 3757 year: 2015 ident: 10.1016/j.vlsi.2025.102608_bib19 article-title: A survey of fault diagnosis and faulttolerant techniques—Part I: Fault diagnosis with model-based and signal-based approaches publication-title: IEEE Trans Industry Electron doi: 10.1109/TIE.2015.2417501 – start-page: 1353 year: 2018 ident: 10.1016/j.vlsi.2025.102608_bib36 article-title: CoreGuided Minimal Correction Set and Core Enumeration publication-title: IJCAI – volume: 72 start-page: 1 year: 2011 ident: 10.1016/j.vlsi.2025.102608_bib20 article-title: Sparse autoencoder publication-title: CS294A Lecture notes – ident: 10.1016/j.vlsi.2025.102608_bib34 – volume: 109 start-page: 85 year: 2019 ident: 10.1016/j.vlsi.2025.102608_bib1 article-title: Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2019.04.021 – volume: 21 start-page: 223 year: 2016 ident: 10.1016/j.vlsi.2025.102608_bib32 article-title: Fast, flexible MUS enumeration publication-title: Constraints doi: 10.1007/s10601-015-9183-0 – ident: 10.1016/j.vlsi.2025.102608_bib41 doi: 10.1007/978-3-030-45190-5_8 – volume: 15 start-page: 2446 issue: 4 year: 2019 ident: 10.1016/j.vlsi.2025.102608_bib3 article-title: Highly Accurate Machine Fault Diagnosis Using Deep Transfer Learning publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2018.2864759 – ident: 10.1016/j.vlsi.2025.102608_bib39 doi: 10.1063/1.5033715 – volume: 194 year: 2021 ident: 10.1016/j.vlsi.2025.102608_bib45 article-title: Fault Detection based on Deep Learning for Digital VLSI Circuits publication-title: Procedia Computer Science doi: 10.1016/j.procs.2021.10.065 – volume: 34 start-page: 511 year: 2018 ident: 10.1016/j.vlsi.2025.102608_bib13 article-title: An Efficient SAT-Based Test Generation Algorithm with GPU Accelerator publication-title: J Electron Test doi: 10.1007/s10836-018-5747-4 – ident: 10.1016/j.vlsi.2025.102608_bib24 – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.vlsi.2025.102608_bib4 article-title: A Diode-Based Fault Detection, Classification, and Localization Method for Photovoltaic Array publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 2016 start-page: 57 year: 2016 ident: 10.1016/j.vlsi.2025.102608_bib31 article-title: Minimal unsatisfiable core extraction for SMT publication-title: Formal Methods in Computer-Aided Design (FMCAD) – volume: 15 start-page: 4776 issue: 1 year: 2025 ident: 10.1016/j.vlsi.2025.102608_bib7 article-title: Deep learning based gasket fault detection: a CNN approach publication-title: Sci Rep doi: 10.1038/s41598-025-85223-8 – ident: 10.1016/j.vlsi.2025.102608_bib44 doi: 10.1109/ISCAS.1989.100747 – year: 2011 ident: 10.1016/j.vlsi.2025.102608_bib23 article-title: Contractive auto-encoders: Explicit invariance during feature extraction publication-title: Icml – ident: 10.1016/j.vlsi.2025.102608_bib30 doi: 10.29007/sxzb – volume: 19 year: 2012 ident: 10.1016/j.vlsi.2025.102608_bib40 article-title: Computing Minimally Unsatisfiable Subformulas: State of the Art and Future Directions publication-title: J Multiple-Valued Logic & Soft Comp – ident: 10.1016/j.vlsi.2025.102608_bib25 doi: 10.1109/ICM.2016.7847940 – ident: 10.1016/j.vlsi.2025.102608_bib43 – volume: 40 start-page: 307 year: 2000 ident: 10.1016/j.vlsi.2025.102608_bib17 article-title: Design error diagnosis in digital circuits with stuck-at fault model publication-title: Microelectron Reliab doi: 10.1016/S0026-2714(99)00203-6 – ident: 10.1016/j.vlsi.2025.102608_bib29 doi: 10.1007/978-3-030-01090-4_9 – ident: 10.1016/j.vlsi.2025.102608_bib18 doi: 10.1007/3-540-60385-9_11 – ident: 10.1016/j.vlsi.2025.102608_bib27 doi: 10.1145/800157.805047 – ident: 10.1016/j.vlsi.2025.102608_bib22 doi: 10.1145/1390156.1390294 – volume: 34 start-page: 163 year: 2018 ident: 10.1016/j.vlsi.2025.102608_bib15 article-title: Application of Machine Learning Techniques in Post-Silicon Debugging and Bug Localization publication-title: J Electron Test doi: 10.1007/s10836-018-5716-y – ident: 10.1016/j.vlsi.2025.102608_bib14 – volume: 27 start-page: 293 year: 2015 ident: 10.1016/j.vlsi.2025.102608_bib26 article-title: Cud@ sat: Sat solving on gpus publication-title: J Exp Theor Artif Intell doi: 10.1080/0952813X.2014.954274 – ident: 10.1016/j.vlsi.2025.102608_bib10 doi: 10.1109/ICM48031.2019.9021938 – volume: 182 start-page: 95 year: 2021 ident: 10.1016/j.vlsi.2025.102608_bib12 article-title: Fast Auto-Correction algorithm for Digital VLSI Circuits publication-title: Procedia Computer Science doi: 10.1016/j.procs.2021.02.013 – volume: 161 year: 2022 ident: 10.1016/j.vlsi.2025.102608_bib2 article-title: A review of computing-based automated fault detection and diagnosis of heating, ventilation and air conditioning systems publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2022.112395 – ident: 10.1016/j.vlsi.2025.102608_bib37 – ident: 10.1016/j.vlsi.2025.102608_bib16 doi: 10.1007/s12652-020-02247-w – volume: 180 start-page: 123 year: 2022 ident: 10.1016/j.vlsi.2025.102608_bib6 article-title: Deep neural network approach for fault detection and diagnosis in rocket engine tests publication-title: Acta Astronautica – ident: 10.1016/j.vlsi.2025.102608_bib11 doi: 10.5121/csit.2020.101508 – ident: 10.1016/j.vlsi.2025.102608_bib38 doi: 10.1007/978-3-319-59776-8_7 – ident: 10.1016/j.vlsi.2025.102608_bib21 – ident: 10.1016/j.vlsi.2025.102608_bib28 doi: 10.5121/csit.2020.101508 – volume: 231 year: 2022 ident: 10.1016/j.vlsi.2025.102608_bib35 article-title: A review on autoencoder based representation learning for fault detection and diagnosis in industrial processes publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2022.104711 – ident: 10.1016/j.vlsi.2025.102608_bib42 – volume: 22 start-page: 227 issue: 1 year: 2022 ident: 10.1016/j.vlsi.2025.102608_bib33 article-title: Fault Detection and Diagnosis in Industrial Processes with Variational Autoencoder: A Comprehensive Study publication-title: Sensors doi: 10.3390/s22010227 – volume: 8 start-page: 9335 year: 2020 ident: 10.1016/j.vlsi.2025.102608_bib5 article-title: Deep Learning-Based Intelligent Fault Diagnosis Methods Toward Rotating Machinery publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2963092 – ident: 10.1016/j.vlsi.2025.102608_bib9 |
| SSID | ssj0001475 |
| Score | 2.3824952 |
| Snippet | As Very Large-Scale Integration (VLSI) technology advances, the demand for reliable and scalable pre-silicon fault detection (FD) techniques continues to grow.... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 102608 |
| SubjectTerms | Contractive autoencoder Convolutional autoencoder Deep learning Digital VLSI circuits Error debugging Stacked sparse autoencoders Variational autoencoder |
| Title | Enhanced fault detection in digital VLSI circuits using convolutional autoencoders |
| URI | https://dx.doi.org/10.1016/j.vlsi.2025.102608 |
| Volume | 107 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0167-9260 databaseCode: AIEXJ dateStart: 19950601 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0001475 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLag4wCHiZ9iDCYfuFWZEidO4mO1daIDTRMtqLfIsR2WbrhTm1b78_cc22k3DcQOXKLITRw336fnF7_P7yH0WcTCBJPMzl8SB0mesoAlEgCpmFI85mEqZFtsIjs7y6dTdu6kvMu2nECmdX5zw67_K9TQBmCbrbOPgLvrFBrgHECHI8AOx38CfqgvbFT_hK-uGjAojRJe0Xhc_zJFQvo_v41H_aN6IVYmbvDDBf_12g3MwLZq5ibHpXQKee_Ajlx6CcuafPDbJFqQhlXdisKYw9-xPDN7F-QCJsrLC96pgNutwKqxOoIx17ONjufr3BRkt7-cw30Ae729LkHSjTDLL1WCCWbEVgtw5jEyGczyBy23XUSYHa6vljV8thN6uLn4bprse9NXJyr0erVZYfooTB-F7eMp2iEZZXkP7QxGw-lpN1VHSUZ98nczVLerygoA74_kYc9lyxuZvES77jMCDyz8r9ATpV-jF1vJJd-g754IuCUC7oiAa40dEbAhAvZEwC0R8B0i4G0ivEWTk-Hk6EvgKmgEgqV5AMaa8UpIZaLdWSIiysuU8hia8rCsVBnHMiWyjLmgmQLbHVZpVAoqeBhyAp76O9TTc63eIyxoVYKvStJKsEQQcNzDTEWKJeDwCiHlHur7l1Nc2zwpxZ8B2UPUv7_CeXrWgyuADn-578OjnrKPnm-I-RH1msVKfULPxLqpl4sDx4VbHhR1Yg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Fault+Detection+in+Digital+VLSI+Circuits+Using+Convolutional+Autoencoders&rft.jtitle=Integration+%28Amsterdam%29&rft.au=Savalam%2C+Chandrasekhar&rft.au=Medisetti%2C+Sanjay&rft.au=Korapati%2C+Prasanti&rft.date=2026-03-01&rft.issn=0167-9260&rft.spage=102608&rft_id=info:doi/10.1016%2Fj.vlsi.2025.102608&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_vlsi_2025_102608 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9260&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9260&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9260&client=summon |