Enhanced fault detection in digital VLSI circuits using convolutional autoencoders

As Very Large-Scale Integration (VLSI) technology advances, the demand for reliable and scalable pre-silicon fault detection (FD) techniques continues to grow. Conventional diagnostic methods often face limitations in identifying subtle stuck-at faults within complex and high-dimensional test data....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integration (Amsterdam) Jg. 107; S. 102608
Hauptverfasser: Savalam, Chandrasekhar, Medisetti, Sanjay, Korapati, Prasanti
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.03.2026
Schlagworte:
ISSN:0167-9260
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract As Very Large-Scale Integration (VLSI) technology advances, the demand for reliable and scalable pre-silicon fault detection (FD) techniques continues to grow. Conventional diagnostic methods often face limitations in identifying subtle stuck-at faults within complex and high-dimensional test data. This study proposes a deep learning-based fault detection framework that integrates unsupervised and supervised learning to enhance fault identification and classification in combinational circuits. A Convolutional Autoencoder (CAE) is employed to extract spatial and structural features from circuit test patterns, effectively reducing dimensionality while preserving fault-related information. The encoded features are then classified using a Random Forest model for precise fault localization. The proposed framework is validated on ISCAS’85 benchmark circuits of different sizes and complexities, achieving fault detection accuracies ranging from 93 % to 100 %. Notably, when compared to existing models such as SSAE, VAE, and CEAE, which recorded accuracies between 83 % to 98 %, the proposed CAE-Random Forest framework consistently outperformed them across all benchmarks. Furthermore, the model exhibited stable convergence, low reconstruction error, and efficient memory usage of about 380–403 MB, ensuring reliable and scalable performance. Overall, these results demonstrate that the framework offers a robust, high-accuracy, and resource-efficient solution for automatic fault detection in digital VLSI circuits. It can also be effectively extended to more complex architectures for improved diagnostic reliability. •The proposed Convolutional Autoencoder (CAE) - Random Forest framework achieved 93–100 % fault detection accuracy across ISCAS’85 benchmark circuits, outperforming SSAE, VAE, and CEAE models (83–98 %).•The CAE-based approach reached 100 % accuracy on five benchmark circuits and improved the average detection accuracy (97.4 %) compared to SSAE (93.3 %), with superior precision, recall, and F1-scores.•The unsupervised CAE effectively reduced data dimensionality while preserving fault-related spatial patterns, enabling accurate detection of subtle stuck-at faults and reducing false negatives.•The model exhibited stable convergence, low reconstruction error, and efficient memory utilization (380–403 MB), confirming its scalability and suitability for complex VLSI architectures.•Future work will focus on real-time fault detection, noise resilience, and low-power hardware deployment to enhance the applicability of the CAE framework in next-generation nano-electronics circuit testing.
AbstractList As Very Large-Scale Integration (VLSI) technology advances, the demand for reliable and scalable pre-silicon fault detection (FD) techniques continues to grow. Conventional diagnostic methods often face limitations in identifying subtle stuck-at faults within complex and high-dimensional test data. This study proposes a deep learning-based fault detection framework that integrates unsupervised and supervised learning to enhance fault identification and classification in combinational circuits. A Convolutional Autoencoder (CAE) is employed to extract spatial and structural features from circuit test patterns, effectively reducing dimensionality while preserving fault-related information. The encoded features are then classified using a Random Forest model for precise fault localization. The proposed framework is validated on ISCAS’85 benchmark circuits of different sizes and complexities, achieving fault detection accuracies ranging from 93 % to 100 %. Notably, when compared to existing models such as SSAE, VAE, and CEAE, which recorded accuracies between 83 % to 98 %, the proposed CAE-Random Forest framework consistently outperformed them across all benchmarks. Furthermore, the model exhibited stable convergence, low reconstruction error, and efficient memory usage of about 380–403 MB, ensuring reliable and scalable performance. Overall, these results demonstrate that the framework offers a robust, high-accuracy, and resource-efficient solution for automatic fault detection in digital VLSI circuits. It can also be effectively extended to more complex architectures for improved diagnostic reliability. •The proposed Convolutional Autoencoder (CAE) - Random Forest framework achieved 93–100 % fault detection accuracy across ISCAS’85 benchmark circuits, outperforming SSAE, VAE, and CEAE models (83–98 %).•The CAE-based approach reached 100 % accuracy on five benchmark circuits and improved the average detection accuracy (97.4 %) compared to SSAE (93.3 %), with superior precision, recall, and F1-scores.•The unsupervised CAE effectively reduced data dimensionality while preserving fault-related spatial patterns, enabling accurate detection of subtle stuck-at faults and reducing false negatives.•The model exhibited stable convergence, low reconstruction error, and efficient memory utilization (380–403 MB), confirming its scalability and suitability for complex VLSI architectures.•Future work will focus on real-time fault detection, noise resilience, and low-power hardware deployment to enhance the applicability of the CAE framework in next-generation nano-electronics circuit testing.
ArticleNumber 102608
Author Medisetti, Sanjay
Savalam, Chandrasekhar
Korapati, Prasanti
Author_xml – sequence: 1
  givenname: Chandrasekhar
  orcidid: 0000-0002-9909-761X
  surname: Savalam
  fullname: Savalam, Chandrasekhar
  email: csekhar.savalam@gmail.com
  organization: Department of ECE, Dhanekula Institute of Engineering & Technology, Ganguru, A.P, India
– sequence: 2
  givenname: Sanjay
  surname: Medisetti
  fullname: Medisetti, Sanjay
  organization: Department of ECE, Dhanekula Institute of Engineering & Technology, Ganguru, A.P, India
– sequence: 3
  givenname: Prasanti
  surname: Korapati
  fullname: Korapati, Prasanti
  organization: Department of EIE, VR Siddhartha Engineering College, Kanuru, A.P, India
BookMark eNp9kN1KAzEQhXNRwbb6Al7lBbbmp9kf8EZK1UJB0OJtyE5ma8qaSLJb8O3NUq-9GmbmnGHOtyAzHzwScsfZijNe3p9W5z65lWBC5YEoWT0j87yoiiY312SR0okxxteVmpO3rf80HtDSzoz9QC0OCIMLnjpPrTu6wfT0Y_--o-AijG5IdEzOHykEfw79OEmzwoxDQA_BYkw35KozfcLbv7okh6ftYfNS7F-fd5vHfQFNWRdSiMZ0YJE1UlVr4Mq0pTIyj2rWdthKaUthW2lAVaiqmnUlb0GBYcwIXsolEZezEENKETv9Hd2XiT-aMz2B0Cc9gdATCH0BkU0PFxPmx84Oo07gcMrvYs6tbXD_2X8BLwBsrQ
Cites_doi 10.2197/ipsjtsldm.7.46
10.1109/TIE.2015.2417501
10.1016/j.rser.2019.04.021
10.1007/s10601-015-9183-0
10.1007/978-3-030-45190-5_8
10.1109/TII.2018.2864759
10.1063/1.5033715
10.1016/j.procs.2021.10.065
10.1007/s10836-018-5747-4
10.1038/s41598-025-85223-8
10.1109/ISCAS.1989.100747
10.29007/sxzb
10.1109/ICM.2016.7847940
10.1016/S0026-2714(99)00203-6
10.1007/978-3-030-01090-4_9
10.1007/3-540-60385-9_11
10.1145/800157.805047
10.1145/1390156.1390294
10.1007/s10836-018-5716-y
10.1080/0952813X.2014.954274
10.1109/ICM48031.2019.9021938
10.1016/j.procs.2021.02.013
10.1016/j.rser.2022.112395
10.1007/s12652-020-02247-w
10.5121/csit.2020.101508
10.1007/978-3-319-59776-8_7
10.1016/j.chemolab.2022.104711
10.3390/s22010227
10.1109/ACCESS.2019.2963092
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.vlsi.2025.102608
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_vlsi_2025_102608
S0167926025002652
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9DU
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABDPE
ABFNM
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AFJKZ
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c968-3229afcde093574c15ab65a3fcd80bfeb33d62db3ac57e5780f61bc5ca00a2163
ISSN 0167-9260
IngestDate Thu Nov 27 00:53:52 EST 2025
Wed Dec 10 14:27:08 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Contractive autoencoder
Error debugging
Stacked sparse autoencoders
Variational autoencoder
Convolutional autoencoder
Digital VLSI circuits
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c968-3229afcde093574c15ab65a3fcd80bfeb33d62db3ac57e5780f61bc5ca00a2163
ORCID 0000-0002-9909-761X
ParticipantIDs crossref_primary_10_1016_j_vlsi_2025_102608
elsevier_sciencedirect_doi_10_1016_j_vlsi_2025_102608
PublicationCentury 2000
PublicationDate March 2026
PublicationDateYYYYMMDD 2026-03-01
PublicationDate_xml – month: 03
  year: 2026
  text: March 2026
PublicationDecade 2020
PublicationTitle Integration (Amsterdam)
PublicationYear 2026
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Liffiton, Previti, Malik, Marques-Silva (bib32) 2016; 21
Bendík, Černá (bib41) 2020
Rifai, Vincent, Muller, Glorot, Bengio (bib34) 2011
Leo, Tack (bib38) 2017
Bendík, Cerná (bib30) 2018
Chen, Zhang, Li, Shi, Gao, Hu (bib2) 2022; 161
Becker (bib37) 2018
Wang, Wang (bib6) 2022; 180
Lynce, Marques-Silva (bib24) 2001
Zhu, Jiang, Liu (bib33) 2022; 22
Shimakawa, Hagihara, Yonezaki (bib39) 2018
Dal Palù, Dovier, Formisano, Pontelli (bib26) 2015; 27
Zhao, Li, Zhang, Zhang (bib1) 2019; 109
Shiney, Seetharaman, Sharmila, Prathiba (bib7) 2025 Feb 8; 15
Gaber, Hussein, Moness (bib12) 2021; 182
Wahba, Borrione (bib18) 1995
Qian, Song, Yao, Zhu, Zhang (bib35) 2022; 231
Bryan (bib43) 1985; vol. 25
Gaber, Hussein, Moness (bib45) 2021; 194
Tang, Yuan, Zhu (bib5) 2020; 8
Arodytska, Bjørner, Marinescu, Sagiv (bib36) 2018
Brglez, Bryan, Kozminski (bib44) 1989
Osama, Gaber, Hussein, Mahmoud (bib13) 2018; 34
Ali, Hussein, Ali (bib25) 2016
Rashinkar, Paterson, Singh (bib9) 2007
Jo, Matsumoto, Fujita (bib8) 2014; 7
Cook (bib27) 1971
Vincent, Larochelle, Bengio, Manzagol (bib22) 2008
GuthmSSAE, Strichman, Trostanetski (bib31) 2016; 2016
Gaber, Hussein, Moness (bib10) 2019
Gaber, Hussein, Moness (bib11) 2020
Jutman, Ubar (bib17) 2000; 40
Gaber, Hussein, Mahmoud, Mabrook, Moness (bib16) 2020
Gaber, Hussein, Moness (bib28) 2020
Marques-Silva (bib40) 2012; 19
Shao, McAleer, Yan, Baldi (bib3) April 2019; 15
Baldi (bib21) 2012
Rodríguez Gómez (bib14) 2017
Ng (bib20) 2011; 72
Rifai, Vincent, Muller, Glorot, Bengio (bib23) 2011
Gao, Cecati, Ding (bib19) 2015; 62
Mehmood, Sher, Murtaza, Al-Haddad (bib4) 2021; 70
Bendík, Černá, Beneš (bib29) 2018
Selsam (bib42) 2019
El Mandouh, Wassal (bib15) 2018; 34
Gaber (10.1016/j.vlsi.2025.102608_bib12) 2021; 182
Ng (10.1016/j.vlsi.2025.102608_bib20) 2011; 72
10.1016/j.vlsi.2025.102608_bib41
Mehmood (10.1016/j.vlsi.2025.102608_bib4) 2021; 70
Liffiton (10.1016/j.vlsi.2025.102608_bib32) 2016; 21
Wang (10.1016/j.vlsi.2025.102608_bib6) 2022; 180
Shao (10.1016/j.vlsi.2025.102608_bib3) 2019; 15
Marques-Silva (10.1016/j.vlsi.2025.102608_bib40) 2012; 19
10.1016/j.vlsi.2025.102608_bib28
GuthmSSAE (10.1016/j.vlsi.2025.102608_bib31) 2016; 2016
10.1016/j.vlsi.2025.102608_bib29
10.1016/j.vlsi.2025.102608_bib27
Jo (10.1016/j.vlsi.2025.102608_bib8) 2014; 7
10.1016/j.vlsi.2025.102608_bib24
10.1016/j.vlsi.2025.102608_bib25
10.1016/j.vlsi.2025.102608_bib22
10.1016/j.vlsi.2025.102608_bib44
10.1016/j.vlsi.2025.102608_bib9
10.1016/j.vlsi.2025.102608_bib42
10.1016/j.vlsi.2025.102608_bib21
10.1016/j.vlsi.2025.102608_bib43
10.1016/j.vlsi.2025.102608_bib30
Chen (10.1016/j.vlsi.2025.102608_bib2) 2022; 161
Shiney (10.1016/j.vlsi.2025.102608_bib7) 2025; 15
Gaber (10.1016/j.vlsi.2025.102608_bib45) 2021; 194
Zhao (10.1016/j.vlsi.2025.102608_bib1) 2019; 109
Rifai (10.1016/j.vlsi.2025.102608_bib23) 2011
Tang (10.1016/j.vlsi.2025.102608_bib5) 2020; 8
Gao (10.1016/j.vlsi.2025.102608_bib19) 2015; 62
Osama (10.1016/j.vlsi.2025.102608_bib13) 2018; 34
Zhu (10.1016/j.vlsi.2025.102608_bib33) 2022; 22
10.1016/j.vlsi.2025.102608_bib39
10.1016/j.vlsi.2025.102608_bib18
Arodytska (10.1016/j.vlsi.2025.102608_bib36) 2018
10.1016/j.vlsi.2025.102608_bib37
10.1016/j.vlsi.2025.102608_bib16
10.1016/j.vlsi.2025.102608_bib38
10.1016/j.vlsi.2025.102608_bib14
Dal Palù (10.1016/j.vlsi.2025.102608_bib26) 2015; 27
Qian (10.1016/j.vlsi.2025.102608_bib35) 2022; 231
10.1016/j.vlsi.2025.102608_bib11
El Mandouh (10.1016/j.vlsi.2025.102608_bib15) 2018; 34
10.1016/j.vlsi.2025.102608_bib34
10.1016/j.vlsi.2025.102608_bib10
Jutman (10.1016/j.vlsi.2025.102608_bib17) 2000; 40
References_xml – volume: 231
  year: 2022
  ident: bib35
  article-title: A review on autoencoder based representation learning for fault detection and diagnosis in industrial processes
  publication-title: Chemometr. Intell. Lab. Syst.
– year: 2007
  ident: bib9
  article-title: Singh, system-on-achip Verification: Methodology and Techniques
– volume: 109
  start-page: 85
  year: 2019
  end-page: 101
  ident: bib1
  article-title: Artificial intelligence-based fault detection and diagnosis methods for building energy systems: advantages, challenges and the future
  publication-title: Renew. Sustain. Energy Rev.
– start-page: 1096
  year: 2008
  end-page: 1103
  ident: bib22
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: Proceedings of the 25th International Conference on Machine Learning
– year: 2018
  ident: bib39
  article-title: Efficiency of the strong satisfiability checking procedure for reactive system specifications
  publication-title: Proceeding AIP Conference Pp 040051
– start-page: 143
  year: 2018
  end-page: 159
  ident: bib29
  article-title: Recursive online enumeration of all minimal unsatisfiable subsets
  publication-title: International Symposium on Automated Technology for Verification and Analysis
– year: 2017
  ident: bib14
  article-title: Machine Learning Support for Logic Diagnosis
– start-page: 1353
  year: 2018
  end-page: 1361
  ident: bib36
  article-title: CoreGuided minimal correction set and core enumeration
  publication-title: IJCAI
– start-page: 833
  year: 2011
  end-page: 840
  ident: bib34
  article-title: Contractive auto-encoders: explicit invariance during feature extraction
  publication-title: Proceedings of the 28th International Conference on International Conference on Machine Learning (ICML'11)
– year: 2016
  ident: bib25
  article-title: Parallelization of unit propagation algorithm for SAT-based ATPG of digital circuits
  publication-title: 2016 Proceeding 28th International Conference on Microelectronics (ICM)
– year: 2020
  ident: bib28
  article-title: Fast auto-correction algorithm for digital VLSI circuits
  publication-title: Presented at the 17th International Learning & Technology Conference
– start-page: 1
  year: 2020
  end-page: 19
  ident: bib16
  article-title: Computation of Minimal Unsatisfiable Subformulas for SAT-based Digital Circuit Error Diagnosis
– start-page: 833
  year: 2011
  end-page: 840
  ident: bib23
  article-title: Contractive auto-encoders: explicit invariance during feature extraction
  publication-title: ICML-Proceedings of the 28th International Conference on Machine Learning,
– volume: 27
  start-page: 293
  year: 2015
  end-page: 316
  ident: bib26
  article-title: Cud@ sat: sat solving on gpus
  publication-title: J. Exp. Theor. Artif. Intell.
– year: 2018
  ident: bib37
  article-title: Satisfiability-Based Methods for Digital Circuit Design, Debug, and Optimization
– start-page: 18
  year: 2019
  end-page: 22
  ident: bib10
  article-title: Improved automatic correction for digital VLSI circuits
  publication-title: 2019 Proceeding 31st International Conference on Microelectronics (ICM)
– volume: vol. 25
  year: 1985
  ident: bib43
  publication-title: The ISCAS'85 Benchmark Circuits and Netlist Format
– start-page: 1929
  year: 1989
  end-page: 1934
  ident: bib44
  article-title: Combinational profiles of sequential benchmark circuits
  publication-title: IEEE International Symposium on Circuits and Systems
– start-page: 131
  year: 2018
  end-page: 142
  ident: bib30
  article-title: Evaluation of domain agnostic approaches for enumeration of minimal unsatisfiable subsets
  publication-title: LPAR
– start-page: 37
  year: 2012
  end-page: 49
  ident: bib21
  article-title: Autoencoders, unsupervised learning, and deep architectures
  publication-title: Proceedings of ICML Workshop on Unsupervised and Transfer Learning
– volume: 8
  start-page: 9335
  year: 2020
  end-page: 9346
  ident: bib5
  article-title: Deep learning-based intelligent fault diagnosis methods toward rotating machinery
  publication-title: IEEE Access
– start-page: 151
  year: 1971
  end-page: 158
  ident: bib27
  article-title: The complexity of theorem-proving procedures
  publication-title: Proceedings of the Third Ssaeual ACM Symposium on Theory of Computing
– volume: 15
  start-page: 2446
  year: April 2019
  end-page: 2455
  ident: bib3
  article-title: Highly accurate machine fault diagnosis using deep transfer learning
  publication-title: IEEE Trans. Ind. Inf.
– volume: 70
  start-page: 1
  year: 2021
  end-page: 12
  ident: bib4
  article-title: A diode-based fault detection, classification, and localization method for photovoltaic array
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 7
  start-page: 46
  year: 2014
  end-page: 55
  ident: bib8
  article-title: SAT-based automatic rectification and debugging of combinational circuits with LUT insertions
  publication-title: IPSJ Transactions on System LSI Design Methodology
– volume: 2016
  start-page: 57
  year: 2016
  end-page: 64
  ident: bib31
  article-title: Minimal unsatisfiable core extraction for SMT
  publication-title: Formal Methods in Computer-Aided Design (FMCAD)
– volume: 21
  start-page: 223
  year: 2016
  end-page: 250
  ident: bib32
  article-title: Fast, flexible MUS enumeration
  publication-title: Constraints
– start-page: 135
  year: 2020
  end-page: 152
  ident: bib41
  article-title: MUST: minimal unsatisfiable subsets enumeration tool
  publication-title: Proceeding International Conference on Tools and Algorithms for the Construction and Analysis of Systems
– start-page: 77
  year: 2017
  end-page: 93
  ident: bib38
  article-title: Debugging unsatisfiable constraint models
  publication-title: Proceeding International Conference on AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems
– volume: 19
  year: 2012
  ident: bib40
  article-title: Computing minimally unsatisfiable subformulas: state of the art and future directions
  publication-title: J. Mult.-Valued Log. Soft Comput.
– volume: 182
  start-page: 95
  year: 2021
  end-page: 102
  ident: bib12
  article-title: Fast auto-correction algorithm for digital VLSI circuits
  publication-title: Procedia Comput. Sci.
– volume: 161
  year: 2022
  ident: bib2
  article-title: A review of computing-based automated fault detection and diagnosis of heating, ventilation and air conditioning systems
  publication-title: Renew. Sustain. Energy Rev.
– volume: 15
  start-page: 4776
  year: 2025 Feb 8
  ident: bib7
  article-title: Deep learning based gasket fault detection: a CNN approach
  publication-title: Sci. Rep.
– volume: 34
  start-page: 511
  year: 2018
  end-page: 527
  ident: bib13
  article-title: An efficient SAT-based test generation algorithm with GPU accelerator
  publication-title: J. Electron. Test.
– year: 2001
  ident: bib24
  article-title: Efficient Data Structures for Fast Sat Solvers
– volume: 194
  year: 2021
  ident: bib45
  article-title: Fault detection based on deep learning for digital VLSI circuits
  publication-title: Procedia Comput. Sci.
– year: 2020
  ident: bib11
  article-title: Incremental automatic correction for digital VLSI circuits
  publication-title: Presented at the Proceceeding 11th International Conference on VLSI (VLSI 2020)
– year: 2019
  ident: bib42
  article-title: Neural Networks and the Satisfiability Problem
– volume: 22
  start-page: 227
  year: 2022
  ident: bib33
  article-title: Fault detection and diagnosis in industrial processes with variational autoencoder: a comprehensive study
  publication-title: Sensors
– volume: 34
  start-page: 163
  year: 2018
  end-page: 181
  ident: bib15
  article-title: Application of machine learning techniques in post-silicon debugging and bug localization
  publication-title: J. Electron. Test.
– volume: 62
  start-page: 3757
  year: 2015
  end-page: 3767
  ident: bib19
  article-title: A survey of fault diagnosis and faulttolerant techniques—Part I: fault diagnosis with model-based and signal-based approaches
  publication-title: IEEE Trans. Ind. Electron.
– volume: 40
  start-page: 307
  year: 2000
  end-page: 320
  ident: bib17
  article-title: Design error diagnosis in digital circuits with stuck-at fault model
  publication-title: Microelectron. Reliab.
– start-page: 171
  year: 1995
  end-page: 188
  ident: bib18
  article-title: Design error diagnosis in sequential circuits
  publication-title: Proceeding Advanced Research Working Conference on Correct Hardware Design and Verification Methods
– volume: 72
  start-page: 1
  year: 2011
  end-page: 19
  ident: bib20
  article-title: Sparse autoencoder
  publication-title: CS294A Lecture notes
– volume: 180
  start-page: 123
  year: 2022
  end-page: 134
  ident: bib6
  article-title: Deep neural network approach for fault detection and diagnosis in rocket engine tests
  publication-title: Acta Astronaut.
– volume: 7
  start-page: 46
  year: 2014
  ident: 10.1016/j.vlsi.2025.102608_bib8
  article-title: SAT-based automatic rectification and debugging of combinational circuits with LUT insertions
  publication-title: IPSJ Transactions on System LSI Design Methodology
  doi: 10.2197/ipsjtsldm.7.46
– volume: 62
  start-page: 3757
  year: 2015
  ident: 10.1016/j.vlsi.2025.102608_bib19
  article-title: A survey of fault diagnosis and faulttolerant techniques—Part I: Fault diagnosis with model-based and signal-based approaches
  publication-title: IEEE Trans Industry Electron
  doi: 10.1109/TIE.2015.2417501
– start-page: 1353
  year: 2018
  ident: 10.1016/j.vlsi.2025.102608_bib36
  article-title: CoreGuided Minimal Correction Set and Core Enumeration
  publication-title: IJCAI
– volume: 72
  start-page: 1
  year: 2011
  ident: 10.1016/j.vlsi.2025.102608_bib20
  article-title: Sparse autoencoder
  publication-title: CS294A Lecture notes
– ident: 10.1016/j.vlsi.2025.102608_bib34
– volume: 109
  start-page: 85
  year: 2019
  ident: 10.1016/j.vlsi.2025.102608_bib1
  article-title: Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2019.04.021
– volume: 21
  start-page: 223
  year: 2016
  ident: 10.1016/j.vlsi.2025.102608_bib32
  article-title: Fast, flexible MUS enumeration
  publication-title: Constraints
  doi: 10.1007/s10601-015-9183-0
– ident: 10.1016/j.vlsi.2025.102608_bib41
  doi: 10.1007/978-3-030-45190-5_8
– volume: 15
  start-page: 2446
  issue: 4
  year: 2019
  ident: 10.1016/j.vlsi.2025.102608_bib3
  article-title: Highly Accurate Machine Fault Diagnosis Using Deep Transfer Learning
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2018.2864759
– ident: 10.1016/j.vlsi.2025.102608_bib39
  doi: 10.1063/1.5033715
– volume: 194
  year: 2021
  ident: 10.1016/j.vlsi.2025.102608_bib45
  article-title: Fault Detection based on Deep Learning for Digital VLSI Circuits
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2021.10.065
– volume: 34
  start-page: 511
  year: 2018
  ident: 10.1016/j.vlsi.2025.102608_bib13
  article-title: An Efficient SAT-Based Test Generation Algorithm with GPU Accelerator
  publication-title: J Electron Test
  doi: 10.1007/s10836-018-5747-4
– ident: 10.1016/j.vlsi.2025.102608_bib24
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.vlsi.2025.102608_bib4
  article-title: A Diode-Based Fault Detection, Classification, and Localization Method for Photovoltaic Array
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 2016
  start-page: 57
  year: 2016
  ident: 10.1016/j.vlsi.2025.102608_bib31
  article-title: Minimal unsatisfiable core extraction for SMT
  publication-title: Formal Methods in Computer-Aided Design (FMCAD)
– volume: 15
  start-page: 4776
  issue: 1
  year: 2025
  ident: 10.1016/j.vlsi.2025.102608_bib7
  article-title: Deep learning based gasket fault detection: a CNN approach
  publication-title: Sci Rep
  doi: 10.1038/s41598-025-85223-8
– ident: 10.1016/j.vlsi.2025.102608_bib44
  doi: 10.1109/ISCAS.1989.100747
– year: 2011
  ident: 10.1016/j.vlsi.2025.102608_bib23
  article-title: Contractive auto-encoders: Explicit invariance during feature extraction
  publication-title: Icml
– ident: 10.1016/j.vlsi.2025.102608_bib30
  doi: 10.29007/sxzb
– volume: 19
  year: 2012
  ident: 10.1016/j.vlsi.2025.102608_bib40
  article-title: Computing Minimally Unsatisfiable Subformulas: State of the Art and Future Directions
  publication-title: J Multiple-Valued Logic & Soft Comp
– ident: 10.1016/j.vlsi.2025.102608_bib25
  doi: 10.1109/ICM.2016.7847940
– ident: 10.1016/j.vlsi.2025.102608_bib43
– volume: 40
  start-page: 307
  year: 2000
  ident: 10.1016/j.vlsi.2025.102608_bib17
  article-title: Design error diagnosis in digital circuits with stuck-at fault model
  publication-title: Microelectron Reliab
  doi: 10.1016/S0026-2714(99)00203-6
– ident: 10.1016/j.vlsi.2025.102608_bib29
  doi: 10.1007/978-3-030-01090-4_9
– ident: 10.1016/j.vlsi.2025.102608_bib18
  doi: 10.1007/3-540-60385-9_11
– ident: 10.1016/j.vlsi.2025.102608_bib27
  doi: 10.1145/800157.805047
– ident: 10.1016/j.vlsi.2025.102608_bib22
  doi: 10.1145/1390156.1390294
– volume: 34
  start-page: 163
  year: 2018
  ident: 10.1016/j.vlsi.2025.102608_bib15
  article-title: Application of Machine Learning Techniques in Post-Silicon Debugging and Bug Localization
  publication-title: J Electron Test
  doi: 10.1007/s10836-018-5716-y
– ident: 10.1016/j.vlsi.2025.102608_bib14
– volume: 27
  start-page: 293
  year: 2015
  ident: 10.1016/j.vlsi.2025.102608_bib26
  article-title: Cud@ sat: Sat solving on gpus
  publication-title: J Exp Theor Artif Intell
  doi: 10.1080/0952813X.2014.954274
– ident: 10.1016/j.vlsi.2025.102608_bib10
  doi: 10.1109/ICM48031.2019.9021938
– volume: 182
  start-page: 95
  year: 2021
  ident: 10.1016/j.vlsi.2025.102608_bib12
  article-title: Fast Auto-Correction algorithm for Digital VLSI Circuits
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2021.02.013
– volume: 161
  year: 2022
  ident: 10.1016/j.vlsi.2025.102608_bib2
  article-title: A review of computing-based automated fault detection and diagnosis of heating, ventilation and air conditioning systems
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2022.112395
– ident: 10.1016/j.vlsi.2025.102608_bib37
– ident: 10.1016/j.vlsi.2025.102608_bib16
  doi: 10.1007/s12652-020-02247-w
– volume: 180
  start-page: 123
  year: 2022
  ident: 10.1016/j.vlsi.2025.102608_bib6
  article-title: Deep neural network approach for fault detection and diagnosis in rocket engine tests
  publication-title: Acta Astronautica
– ident: 10.1016/j.vlsi.2025.102608_bib11
  doi: 10.5121/csit.2020.101508
– ident: 10.1016/j.vlsi.2025.102608_bib38
  doi: 10.1007/978-3-319-59776-8_7
– ident: 10.1016/j.vlsi.2025.102608_bib21
– ident: 10.1016/j.vlsi.2025.102608_bib28
  doi: 10.5121/csit.2020.101508
– volume: 231
  year: 2022
  ident: 10.1016/j.vlsi.2025.102608_bib35
  article-title: A review on autoencoder based representation learning for fault detection and diagnosis in industrial processes
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2022.104711
– ident: 10.1016/j.vlsi.2025.102608_bib42
– volume: 22
  start-page: 227
  issue: 1
  year: 2022
  ident: 10.1016/j.vlsi.2025.102608_bib33
  article-title: Fault Detection and Diagnosis in Industrial Processes with Variational Autoencoder: A Comprehensive Study
  publication-title: Sensors
  doi: 10.3390/s22010227
– volume: 8
  start-page: 9335
  year: 2020
  ident: 10.1016/j.vlsi.2025.102608_bib5
  article-title: Deep Learning-Based Intelligent Fault Diagnosis Methods Toward Rotating Machinery
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2963092
– ident: 10.1016/j.vlsi.2025.102608_bib9
SSID ssj0001475
Score 2.3824952
Snippet As Very Large-Scale Integration (VLSI) technology advances, the demand for reliable and scalable pre-silicon fault detection (FD) techniques continues to grow....
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 102608
SubjectTerms Contractive autoencoder
Convolutional autoencoder
Deep learning
Digital VLSI circuits
Error debugging
Stacked sparse autoencoders
Variational autoencoder
Title Enhanced fault detection in digital VLSI circuits using convolutional autoencoders
URI https://dx.doi.org/10.1016/j.vlsi.2025.102608
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0167-9260
  databaseCode: AIEXJ
  dateStart: 19950601
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001475
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLag4wCHiZ9iDCYfuFWZEidO4mO1daIDTRMtqLfIsR2WbrhTm1b78_cc22k3DcQOXKLITRw336fnF7_P7yH0WcTCBJPMzl8SB0mesoAlEgCpmFI85mEqZFtsIjs7y6dTdu6kvMu2nECmdX5zw67_K9TQBmCbrbOPgLvrFBrgHECHI8AOx38CfqgvbFT_hK-uGjAojRJe0Xhc_zJFQvo_v41H_aN6IVYmbvDDBf_12g3MwLZq5ibHpXQKee_Ajlx6CcuafPDbJFqQhlXdisKYw9-xPDN7F-QCJsrLC96pgNutwKqxOoIx17ONjufr3BRkt7-cw30Ae729LkHSjTDLL1WCCWbEVgtw5jEyGczyBy23XUSYHa6vljV8thN6uLn4bprse9NXJyr0erVZYfooTB-F7eMp2iEZZXkP7QxGw-lpN1VHSUZ98nczVLerygoA74_kYc9lyxuZvES77jMCDyz8r9ATpV-jF1vJJd-g754IuCUC7oiAa40dEbAhAvZEwC0R8B0i4G0ivEWTk-Hk6EvgKmgEgqV5AMaa8UpIZaLdWSIiysuU8hia8rCsVBnHMiWyjLmgmQLbHVZpVAoqeBhyAp76O9TTc63eIyxoVYKvStJKsEQQcNzDTEWKJeDwCiHlHur7l1Nc2zwpxZ8B2UPUv7_CeXrWgyuADn-578OjnrKPnm-I-RH1msVKfULPxLqpl4sDx4VbHhR1Yg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Fault+Detection+in+Digital+VLSI+Circuits+Using+Convolutional+Autoencoders&rft.jtitle=Integration+%28Amsterdam%29&rft.au=Savalam%2C+Chandrasekhar&rft.au=Medisetti%2C+Sanjay&rft.au=Korapati%2C+Prasanti&rft.date=2026-03-01&rft.issn=0167-9260&rft.spage=102608&rft_id=info:doi/10.1016%2Fj.vlsi.2025.102608&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_vlsi_2025_102608
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9260&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9260&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9260&client=summon