RETRACTED: Pre-training graph autoencoder incorporating hierarchical topology knowledge
This article has been retracted: please see Elsevier policy on Article Correction, Retraction and Removal (https://www.elsevier.com/about/policies-and-standards/article-withdrawal). This article has been retracted at the request of the Author, with the approval of Expert Systems with Applications ed...
Gespeichert in:
| Veröffentlicht in: | Expert systems with applications Jg. 265; S. 125976 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
15.03.2025
|
| ISSN: | 0957-4174 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This article has been retracted: please see Elsevier policy on Article Correction, Retraction and Removal (https://www.elsevier.com/about/policies-and-standards/article-withdrawal).
This article has been retracted at the request of the Author, with the approval of Expert Systems with Applications editor.
Concerns were raised following the publication of the paper titled “Pre-training Graph Autoencoder Incorporating Hierarchical Topology Knowledge” (DOI: https://doi.org/10.1016/j.eswa.2024.125976) regarding undisclosed conflicts of interest and compliance risks. Specifically:
1. Unreported Conflict of Interests: The first author's affiliation at the time of publication, Qihoo 360, holds a conflict of interest with the institution, IEI. This conflict of interest was not disclosed during the submission or revision process, violating the journal's ethical guidelines on transparency.
2. Unauthorized Post-Acceptance Affiliation Changes: Following manuscript acceptance, the first author unilaterally altered their affiliation to Qihoo 360 without notifying or obtaining consent from other co-authors. This modification occurred after the peer-review process and contravenes the journal's policy requiring full disclosure of authorship changes.
Considering these issues, the authors assert that the article no longer meets the standards of academic integrity, transparency, or compliance required by Expert Systems with Applications. The co-authors regret the necessity of this request and acknowledge the efforts of the editors and reviewers.
Based on the evidence, the authors and the editor concluded that the article should be retracted. |
|---|---|
| AbstractList | This article has been retracted: please see Elsevier policy on Article Correction, Retraction and Removal (https://www.elsevier.com/about/policies-and-standards/article-withdrawal).
This article has been retracted at the request of the Author, with the approval of Expert Systems with Applications editor.
Concerns were raised following the publication of the paper titled “Pre-training Graph Autoencoder Incorporating Hierarchical Topology Knowledge” (DOI: https://doi.org/10.1016/j.eswa.2024.125976) regarding undisclosed conflicts of interest and compliance risks. Specifically:
1. Unreported Conflict of Interests: The first author's affiliation at the time of publication, Qihoo 360, holds a conflict of interest with the institution, IEI. This conflict of interest was not disclosed during the submission or revision process, violating the journal's ethical guidelines on transparency.
2. Unauthorized Post-Acceptance Affiliation Changes: Following manuscript acceptance, the first author unilaterally altered their affiliation to Qihoo 360 without notifying or obtaining consent from other co-authors. This modification occurred after the peer-review process and contravenes the journal's policy requiring full disclosure of authorship changes.
Considering these issues, the authors assert that the article no longer meets the standards of academic integrity, transparency, or compliance required by Expert Systems with Applications. The co-authors regret the necessity of this request and acknowledge the efforts of the editors and reviewers.
Based on the evidence, the authors and the editor concluded that the article should be retracted. |
| ArticleNumber | 125976 |
| Author | Zhang, Chuang Liu, Luyang Tong, Haonan Zhu, Hongyin Li, Yakun Lin, Qunyang |
| Author_xml | – sequence: 1 givenname: Hongyin orcidid: 0000-0001-5786-7594 surname: Zhu fullname: Zhu, Hongyin email: zhuhongyin@360.cn organization: 360 Search Department, Qihoo 360, Beijing, China – sequence: 2 givenname: Yakun orcidid: 0000-0002-8694-3063 surname: Li fullname: Li, Yakun email: lykun@bjfu.edu.cn organization: School of Information Science and Technology, Beijing Forestry University, Beijing, China – sequence: 3 givenname: Luyang orcidid: 0000-0002-9002-3788 surname: Liu fullname: Liu, Luyang email: liuluyang@ieisystem.com organization: Architecture Research Department, Inspur Electronic Information Industry Co., Ltd., Beijing, China – sequence: 4 givenname: Haonan surname: Tong fullname: Tong, Haonan email: tonghaonan@ieisystem.com organization: Architecture Research Department, Inspur Electronic Information Industry Co., Ltd., Beijing, China – sequence: 5 givenname: Qunyang surname: Lin fullname: Lin, Qunyang email: linqunyang@ieisystem.com organization: Architecture Research Department, Inspur Electronic Information Industry Co., Ltd., Beijing, China – sequence: 6 givenname: Chuang surname: Zhang fullname: Zhang, Chuang email: zhangchuangbj@ieisystem.com organization: Architecture Research Department, Inspur Electronic Information Industry Co., Ltd., Beijing, China |
| BookMark | eNp9kMtOwzAQRb0oEi3wA6zyAwl-xHaC2FSlPKRKoCoSS8u1x6lLiCMnUPXvSVTWbOYuRmc09yzQrA0tIHRLcEYwEXeHDPqjziimeUYoL6WYoTkuuUxzIvNLtOj7A8ZEYizn6GO7rrbLVbV-vE_eI6RD1L71bZ3UUXf7RH8PAVoTLMTEjxm7EPUw7fceoo5m741ukiF0oQn1Kflsw7EBW8M1unC66eHmL69Q9bSuVi_p5u35dbXcpKYUIi0JY8I5Kx0WIpdcC1uyglnCWWGpy60udmycVHMpQTtWmB0tHGccWybxjl0hej5rYuj7CE510X_peFIEq8mGOqjJhppsqLONEXo4QzA-9jP2UL3xY0uwPoIZlA3-P_wXsxNtbA |
| Cites_doi | 10.1609/aimag.v29i3.2157 10.1145/3539618.3591692 10.1145/276675.276685 10.1093/bioinformatics/btac100 10.1093/comjnl/10.1.85 10.1016/j.compeleceng.2022.108445 10.1145/3583780.3614894 10.1002/advs.202203796 10.1145/3459637.3482332 10.1016/j.neucom.2022.05.070 10.1109/TKDE.2022.3200459 10.1609/aaai.v37i11.26615 10.1609/aaai.v35i5.16552 10.1145/3534678.3539321 10.1145/3474085.3475709 10.1023/A:1009953814988 10.3389/fnins.2020.00630 10.1145/3555372 10.1145/3580305.3599546 10.1145/3543507.3583379 10.1016/j.eswa.2022.119369 10.1145/3394486.3403168 10.1609/aaai.v37i8.26192 10.1145/3539597.3570455 10.1145/3447548.3467396 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.eswa.2024.125976 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_eswa_2024_125976 S0957417424028434 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATTM AAXKI AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABMVD ABUCO ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALEQD ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNPGV BNSAS CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSH SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AAYWO AAYXX ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET WUQ XPP ZMT ~HD |
| ID | FETCH-LOGICAL-c966-91336ffd7f066475a6d9383d1538d2f4da8b34da2a577eaf38cb28f5350d370b3 |
| ISSN | 0957-4174 |
| IngestDate | Sat Nov 29 08:01:24 EST 2025 Sat Apr 05 15:39:14 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c966-91336ffd7f066475a6d9383d1538d2f4da8b34da2a577eaf38cb28f5350d370b3 |
| Notes | retraction |
| ORCID | 0000-0002-9002-3788 0000-0002-8694-3063 0000-0001-5786-7594 |
| ParticipantIDs | crossref_primary_10_1016_j_eswa_2024_125976 elsevier_sciencedirect_doi_10_1016_j_eswa_2024_125976 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-15 |
| PublicationDateYYYYMMDD | 2025-03-15 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Chen (10.1016/j.eswa.2024.125976_b4) 2022 10.1016/j.eswa.2024.125976_b5 Liu (10.1016/j.eswa.2024.125976_b20) 2022 Sun (10.1016/j.eswa.2024.125976_b33) 2023 Kim (10.1016/j.eswa.2024.125976_b15) 2020; 14 Kingma (10.1016/j.eswa.2024.125976_b16) 2015 Hassani (10.1016/j.eswa.2024.125976_b7) 2020; vol. 119 Hao (10.1016/j.eswa.2024.125976_b6) 2021 Long (10.1016/j.eswa.2024.125976_b24) 2022; 38 Yang (10.1016/j.eswa.2024.125976_b49) 2024 Wang (10.1016/j.eswa.2024.125976_b39) 2022; 41 10.1016/j.eswa.2024.125976_b8 10.1016/j.eswa.2024.125976_b45 10.1016/j.eswa.2024.125976_b10 Liu (10.1016/j.eswa.2024.125976_b23) 2022 Zhang (10.1016/j.eswa.2024.125976_b54) 2023 10.1016/j.eswa.2024.125976_b55 Shang (10.1016/j.eswa.2024.125976_b30) 2019 10.1016/j.eswa.2024.125976_b51 Thakoor (10.1016/j.eswa.2024.125976_b34) 2022 Wen (10.1016/j.eswa.2024.125976_b42) 2023 Zhu (10.1016/j.eswa.2024.125976_b60) 2016 McCallum (10.1016/j.eswa.2024.125976_b26) 2000; 3 Shao (10.1016/j.eswa.2024.125976_b31) 2022 Xu (10.1016/j.eswa.2024.125976_b47) 2021 Hou (10.1016/j.eswa.2024.125976_b9) 2022 10.1016/j.eswa.2024.125976_b35 Bai (10.1016/j.eswa.2024.125976_b1) 2022 10.1016/j.eswa.2024.125976_b44 Yang (10.1016/j.eswa.2024.125976_b48) 2023; vol. 209 Zhang (10.1016/j.eswa.2024.125976_b53) 2023 Xu (10.1016/j.eswa.2024.125976_b46) 2021; 34 Velickovic (10.1016/j.eswa.2024.125976_b38) 2019 Sen (10.1016/j.eswa.2024.125976_b29) 2008; 29 Li (10.1016/j.eswa.2024.125976_b18) 2023 Hu (10.1016/j.eswa.2024.125976_b11) 2020 Yang (10.1016/j.eswa.2024.125976_b50) 2023 Liu (10.1016/j.eswa.2024.125976_b22) 2023 10.1016/j.eswa.2024.125976_b27 Zhang (10.1016/j.eswa.2024.125976_b52) 2021; 34 10.1016/j.eswa.2024.125976_b25 10.1016/j.eswa.2024.125976_b32 Zhu (10.1016/j.eswa.2024.125976_b59) 2020 Kipf (10.1016/j.eswa.2024.125976_b17) 2016 Ren (10.1016/j.eswa.2024.125976_b28) 2024 Zhu (10.1016/j.eswa.2024.125976_b57) 2023; 215 Wang (10.1016/j.eswa.2024.125976_b40) 2023 Velickovic (10.1016/j.eswa.2024.125976_b37) 2018 Welsh (10.1016/j.eswa.2024.125976_b41) 1967; 10 Chen (10.1016/j.eswa.2024.125976_b3) 2022; 500 Cao (10.1016/j.eswa.2024.125976_b2) 2023 10.1016/j.eswa.2024.125976_b19 10.1016/j.eswa.2024.125976_b14 Wu (10.1016/j.eswa.2024.125976_b43) 2022; 9 10.1016/j.eswa.2024.125976_b13 10.1016/j.eswa.2024.125976_b21 Zheng (10.1016/j.eswa.2024.125976_b56) 2022; 35 Zhu (10.1016/j.eswa.2024.125976_b58) 2022; 104 Hu (10.1016/j.eswa.2024.125976_b12) 2020 Tian (10.1016/j.eswa.2024.125976_b36) 2024 |
| References_xml | – start-page: 2120 year: 2023 ident: 10.1016/j.eswa.2024.125976_b33 article-title: All in one: Multi-task prompting for graph neural networks – year: 2022 ident: 10.1016/j.eswa.2024.125976_b20 article-title: Pre-training molecular graph representation with 3D geometry – start-page: 6616 year: 2024 ident: 10.1016/j.eswa.2024.125976_b28 article-title: A survey of large language models for graphs – volume: 34 start-page: 76 year: 2021 ident: 10.1016/j.eswa.2024.125976_b52 article-title: From canonical correlation analysis to self-supervised graph neural networks publication-title: Advances in Neural Information Processing Systems – year: 2023 ident: 10.1016/j.eswa.2024.125976_b53 article-title: Protein representation learning by geometric structure pretraining – start-page: 265 year: 2021 ident: 10.1016/j.eswa.2024.125976_b6 article-title: Pre-training graph neural networks for cold-start users and items representation – volume: 29 issue: 3 year: 2008 ident: 10.1016/j.eswa.2024.125976_b29 article-title: Collective classification in network data publication-title: AI Magazine doi: 10.1609/aimag.v29i3.2157 – start-page: 142 year: 2023 ident: 10.1016/j.eswa.2024.125976_b2 article-title: When to pre-train graph neural networks? From data generation perspective! – year: 2022 ident: 10.1016/j.eswa.2024.125976_b34 article-title: Large-scale representation learning on graphs via bootstrapping – ident: 10.1016/j.eswa.2024.125976_b51 doi: 10.1145/3539618.3591692 – ident: 10.1016/j.eswa.2024.125976_b5 doi: 10.1145/276675.276685 – start-page: 5953 year: 2019 ident: 10.1016/j.eswa.2024.125976_b30 article-title: Pre-training of graph augmented transformers for medication recommendation – start-page: 11548 year: 2021 ident: 10.1016/j.eswa.2024.125976_b47 article-title: Self-supervised graph-level representation learning with local and global structure – start-page: 2581 year: 2023 ident: 10.1016/j.eswa.2024.125976_b54 article-title: Structure pretraining and prompt tuning for knowledge graph transfer – start-page: 172 year: 2022 ident: 10.1016/j.eswa.2024.125976_b9 article-title: Neural graph matching for pre-training graph neural networks – year: 2020 ident: 10.1016/j.eswa.2024.125976_b12 article-title: Strategies for pre-training graph neural networks – volume: 38 start-page: 2254 issue: 8 year: 2022 ident: 10.1016/j.eswa.2024.125976_b24 article-title: Pre-training graph neural networks for link prediction in biomedical networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac100 – volume: 10 start-page: 85 issue: 1 year: 1967 ident: 10.1016/j.eswa.2024.125976_b41 article-title: An upper bound for the chromatic number of a graph and its application to timetabling problems publication-title: The Computer Journal doi: 10.1093/comjnl/10.1.85 – volume: 104 year: 2022 ident: 10.1016/j.eswa.2024.125976_b58 article-title: SwitchNet: A modular neural network for adaptive relation extraction publication-title: Computers & Electrical Engineering doi: 10.1016/j.compeleceng.2022.108445 – ident: 10.1016/j.eswa.2024.125976_b32 doi: 10.1145/3583780.3614894 – volume: 9 issue: 33 year: 2022 ident: 10.1016/j.eswa.2024.125976_b43 article-title: Pre-training of equivariant graph matching networks with conformation flexibility for drug binding publication-title: Advanced Science doi: 10.1002/advs.202203796 – ident: 10.1016/j.eswa.2024.125976_b14 doi: 10.1145/3459637.3482332 – volume: 500 start-page: 679 year: 2022 ident: 10.1016/j.eswa.2024.125976_b3 article-title: Pre-training on dynamic graph neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.05.070 – year: 2022 ident: 10.1016/j.eswa.2024.125976_b4 article-title: Gccad: Graph contrastive learning for anomaly detection publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2022.3200459 – ident: 10.1016/j.eswa.2024.125976_b45 doi: 10.1609/aaai.v37i11.26615 – volume: 35 start-page: 10809 year: 2022 ident: 10.1016/j.eswa.2024.125976_b56 article-title: Rethinking and scaling up graph contrastive learning: An extremely efficient approach with group discrimination publication-title: Advances in Neural Information Processing Systems – ident: 10.1016/j.eswa.2024.125976_b25 doi: 10.1609/aaai.v35i5.16552 – volume: 34 start-page: 30414 year: 2021 ident: 10.1016/j.eswa.2024.125976_b46 article-title: Infogcl: Information-aware graph contrastive learning publication-title: Advances in Neural Information Processing Systems – ident: 10.1016/j.eswa.2024.125976_b10 doi: 10.1145/3534678.3539321 – start-page: 2419 year: 2023 ident: 10.1016/j.eswa.2024.125976_b40 article-title: Automated 3D pre-training for molecular property prediction – start-page: 7255 year: 2023 ident: 10.1016/j.eswa.2024.125976_b50 article-title: Learning better masking for better language model pre-training – ident: 10.1016/j.eswa.2024.125976_b21 doi: 10.1145/3474085.3475709 – year: 2019 ident: 10.1016/j.eswa.2024.125976_b38 article-title: Deep graph infomax – start-page: 506 year: 2023 ident: 10.1016/j.eswa.2024.125976_b42 article-title: Augmenting low-resource text classification with graph-grounded pre-training and prompting – volume: 3 start-page: 127 year: 2000 ident: 10.1016/j.eswa.2024.125976_b26 article-title: Automating the construction of internet portals with machine learning publication-title: Information Retrieval doi: 10.1023/A:1009953814988 – start-page: 1120 year: 2022 ident: 10.1016/j.eswa.2024.125976_b23 article-title: Mask and reason: Pre-training knowledge graph transformers for complex logical queries – volume: 14 start-page: 630 year: 2020 ident: 10.1016/j.eswa.2024.125976_b15 article-title: Understanding graph isomorphism network for rs-fMRI functional connectivity analysis publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2020.00630 – volume: 41 start-page: 1 issue: 2 year: 2022 ident: 10.1016/j.eswa.2024.125976_b39 article-title: An adaptive graph pre-training framework for localized collaborative filtering publication-title: ACM Transactions on Information Systems doi: 10.1145/3555372 – start-page: 3690 year: 2024 ident: 10.1016/j.eswa.2024.125976_b49 article-title: GraphPro: Graph pre-training and prompt learning for recommendation – ident: 10.1016/j.eswa.2024.125976_b19 doi: 10.1145/3580305.3599546 – year: 2020 ident: 10.1016/j.eswa.2024.125976_b59 – ident: 10.1016/j.eswa.2024.125976_b8 doi: 10.1145/3543507.3583379 – ident: 10.1016/j.eswa.2024.125976_b44 – volume: 215 year: 2023 ident: 10.1016/j.eswa.2024.125976_b57 article-title: Pre-training language model incorporating domain-specific heterogeneous knowledge into a unified representation publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.119369 – ident: 10.1016/j.eswa.2024.125976_b27 doi: 10.1145/3394486.3403168 – start-page: 6001 year: 2022 ident: 10.1016/j.eswa.2024.125976_b1 article-title: Graph pre-training for AMR parsing and generation – year: 2016 ident: 10.1016/j.eswa.2024.125976_b17 – ident: 10.1016/j.eswa.2024.125976_b35 doi: 10.1609/aaai.v37i8.26192 – start-page: 1567 year: 2022 ident: 10.1016/j.eswa.2024.125976_b31 article-title: Pre-training enhanced spatial-temporal graph neural network for multivariate time series forecasting – start-page: 1268 year: 2023 ident: 10.1016/j.eswa.2024.125976_b18 article-title: What’s behind the mask: Understanding masked graph modeling for graph autoencoders – year: 2015 ident: 10.1016/j.eswa.2024.125976_b16 article-title: Adam: A method for stochastic optimization – ident: 10.1016/j.eswa.2024.125976_b55 doi: 10.1145/3539597.3570455 – volume: vol. 119 start-page: 4116 year: 2020 ident: 10.1016/j.eswa.2024.125976_b7 article-title: Contrastive multi-view representation learning on graphs – year: 2018 ident: 10.1016/j.eswa.2024.125976_b37 article-title: Graph attention networks – start-page: 417 year: 2023 ident: 10.1016/j.eswa.2024.125976_b22 article-title: GraphPrompt: Unifying pre-training and downstream tasks for graph neural networks – start-page: 211 year: 2016 ident: 10.1016/j.eswa.2024.125976_b60 article-title: Brain knowledge graph analysis based on complex network theory – start-page: 1857 year: 2020 ident: 10.1016/j.eswa.2024.125976_b11 article-title: GPT-GNN: generative pre-training of graph neural networks – year: 2024 ident: 10.1016/j.eswa.2024.125976_b36 – ident: 10.1016/j.eswa.2024.125976_b13 doi: 10.1145/3447548.3467396 – volume: vol. 209 start-page: 526 year: 2023 ident: 10.1016/j.eswa.2024.125976_b48 article-title: PTGB: pre-train graph neural networks for brain network analysis |
| SSID | ssj0017007 |
| Score | 2.4581342 |
| SecondaryResourceType | retracted_publication |
| Snippet | This article has been retracted: please see Elsevier policy on Article Correction, Retraction and Removal... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 125976 |
| Title | RETRACTED: Pre-training graph autoencoder incorporating hierarchical topology knowledge |
| URI | https://dx.doi.org/10.1016/j.eswa.2024.125976 |
| Volume | 265 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017007 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxsxEBat00Mv6ZsmTYsOvZkN9kqKtL2Z4JCWEEJqqHtatHqUpLAO9m4S__tq9Fhv0lLaQi_CyF6tmfkYjUYz3yD0XpFKaEpkZopcZW6HNhnwomVKQZ6NKSxTvlD4hJ-eivm8OItJ7CvfToDXtbi9La7-q6rdnFM2lM7-hbq7Rd2E--yU7kandjf-keLPp7PzyaEzSHDYP1uaLHWBGHpy6qFsmwWwVwKJBFAzBCZj-B7aYvuLBdBbE7onrIdd1O1OEB8YkpvIA50q5Hp34Zt4dOs3t0X9bX2xyf7xKQRf5fe2N-V_eNKuZdxLfeg7WKJj6c4LdT9AkTPI0AolmiFqlipnNmlKIfzIMzoOHXqSJc5D24ifrHoIMFzum9UNUEXldN-5ZQW_R6HtN-XPsDCsC7dGghL6EG3lnBVigLYmH6fzT90VEx-FWvr0R2JFVUj-u_-mX3stPU9k9hRtxyMEngTVP0MPTP0cPUntOXC01i_Qlw4JH3AfB9jjAPdwgO_gAPdxgBMOcIeDl2h2NJ0dHmexj0am3GEWcivIgbWaW-deUs7kgS6IIBr2Op1bqqWoiBtzyTg30hKhqlxYRthIEz6qyCs0qBe1eY0wY4Y7n9MKKKmu6Fhwozk1Nh9bNVa62EHDJKbyKrCllCmN8LIEoZYg1DIIdQexJMky-nvBjyud4n_z3O4_PvcGPd7gcw8NmmVr3qJH6rq5WC3fRXz8AJMffMo |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RETRACTED%3A+Pre-training+graph+autoencoder+incorporating+hierarchical+topology+knowledge&rft.jtitle=Expert+systems+with+applications&rft.au=Zhu%2C+Hongyin&rft.au=Li%2C+Yakun&rft.au=Liu%2C+Luyang&rft.au=Tong%2C+Haonan&rft.date=2025-03-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=265&rft_id=info:doi/10.1016%2Fj.eswa.2024.125976&rft.externalDocID=S0957417424028434 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |