POLAK-RIBIERE CONJUGATE GRADIENT ALGORITHM IN PREDICTING THE PERCENTAGE OF OPEN UNEMPLOYMENT IN NORTH SUMATRA PROVINCE

The economic problem that has a direct impact on human life and welfare is unemployment. One of the cities in Indonesia with the highest unemployment rate is North Sumatra Province. For example, Tebing Tinggi City had the highest unemployment rate of 9.73% in 2017, while Nias Selatan had the lowest...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Jurnal Teknik Informatika (Jutif) Ročník 5; číslo 1; s. 31 - 38
Hlavní autori: Amalya, Nanda, Solikhun, Solikhun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: 31.01.2024
ISSN:2723-3863, 2723-3871
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The economic problem that has a direct impact on human life and welfare is unemployment. One of the cities in Indonesia with the highest unemployment rate is North Sumatra Province. For example, Tebing Tinggi City had the highest unemployment rate of 9.73% in 2017, while Nias Selatan had the lowest percentage of 0.31%. This research is important to do in order to anticipate the unemployment rate in North Sumatra for any party, be it the government or the private sector, so that they can work together to overcome the problem of unemployment in the future which is the main problem in the economy. For example, the government creates programs to help reduce the number of unemployed, provide preparation or do other things, helping people to become more imaginative and have skills so they can compete in the world market. Predicting unemployment has been the subject of many studies, one of which is by utilizing artificial neural networks. This study aims to predict the percentage of unemployed in North Sumatra from 2022 to 2026, using the Backpropagation Neural Network Algorithm, the Conjugate Gradient Polak-Ribiere method and Matlab version 2011 for research and data analysis. This research utilizes open action rate stimulation data for the population of North Sumatra based on residents aged over 15 years from 2017 to 2021. Using five architectural models, namely: 4-50-1, 4-55-1, 4-70- 1, 4-75-1, and 4-77-1. The final results were obtained using the most accurate architectural model, namely model 4-75-1 which has a Mean Squared Error (MSE) of 0.0000004288 and an accuracy rate of 100% with a time of 00.09 at epoch 452.
AbstractList The economic problem that has a direct impact on human life and welfare is unemployment. One of the cities in Indonesia with the highest unemployment rate is North Sumatra Province. For example, Tebing Tinggi City had the highest unemployment rate of 9.73% in 2017, while Nias Selatan had the lowest percentage of 0.31%. This research is important to do in order to anticipate the unemployment rate in North Sumatra for any party, be it the government or the private sector, so that they can work together to overcome the problem of unemployment in the future which is the main problem in the economy. For example, the government creates programs to help reduce the number of unemployed, provide preparation or do other things, helping people to become more imaginative and have skills so they can compete in the world market. Predicting unemployment has been the subject of many studies, one of which is by utilizing artificial neural networks. This study aims to predict the percentage of unemployed in North Sumatra from 2022 to 2026, using the Backpropagation Neural Network Algorithm, the Conjugate Gradient Polak-Ribiere method and Matlab version 2011 for research and data analysis. This research utilizes open action rate stimulation data for the population of North Sumatra based on residents aged over 15 years from 2017 to 2021. Using five architectural models, namely: 4-50-1, 4-55-1, 4-70- 1, 4-75-1, and 4-77-1. The final results were obtained using the most accurate architectural model, namely model 4-75-1 which has a Mean Squared Error (MSE) of 0.0000004288 and an accuracy rate of 100% with a time of 00.09 at epoch 452.
Author Solikhun, Solikhun
Amalya, Nanda
Author_xml – sequence: 1
  givenname: Nanda
  surname: Amalya
  fullname: Amalya, Nanda
– sequence: 2
  givenname: Solikhun
  surname: Solikhun
  fullname: Solikhun, Solikhun
BookMark eNo9kF1LwzAUhoNMcM79BckfaM1H07SXsYtttE1KzASvStemMNFNVhX893ZTvDrnwHleXp5LMNvtdx6Aa4xCRiIa3-Dw5fNjO4QEkShkIQ4xivgZmBNOaEATjmf_e0wvwHIctxsURZwhxOgcfNWmFA-BVbdKWgkzo-_XuXAS5laslNQOijI3VrmigkrD2sqVypzSOXSFhLW02fQjcgnNHTS11HCtZVWX5rk6shOhjXUFfFxXwlkx8eZJ6UxegfOhfR398m8ugLuTLiuC0uQqE2XQpYwHOPHUD3joUMw48oR2U3XUEt6ltEv6FCMeJbhtE4Z8OtCW86jre9xukqTvNsTTBYh_Y7vDfhwPfmjeD9u39vDdYNSc_DW4Oflrjv4aNp1Hf_QHD09eAg
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.52436/1.jutif.2024.5.1.1047
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2723-3871
EndPage 38
ExternalDocumentID 10_52436_1_jutif_2024_5_1_1047
GroupedDBID AAYXX
CITATION
M~E
ID FETCH-LOGICAL-c957-18e3ef1fc06570e23cb040a27c93c8d9107481aa850e9f3a774cdd1ab88dcb2e3
ISSN 2723-3863
IngestDate Sat Nov 29 07:56:04 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c957-18e3ef1fc06570e23cb040a27c93c8d9107481aa850e9f3a774cdd1ab88dcb2e3
OpenAccessLink https://doi.org/10.52436/1.jutif.2024.5.1.1047
PageCount 8
ParticipantIDs crossref_primary_10_52436_1_jutif_2024_5_1_1047
PublicationCentury 2000
PublicationDate 2024-01-31
PublicationDateYYYYMMDD 2024-01-31
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-31
  day: 31
PublicationDecade 2020
PublicationTitle Jurnal Teknik Informatika (Jutif)
PublicationYear 2024
SSID ssib044750053
Score 1.8592055
Snippet The economic problem that has a direct impact on human life and welfare is unemployment. One of the cities in Indonesia with the highest unemployment rate is...
SourceID crossref
SourceType Index Database
StartPage 31
Title POLAK-RIBIERE CONJUGATE GRADIENT ALGORITHM IN PREDICTING THE PERCENTAGE OF OPEN UNEMPLOYMENT IN NORTH SUMATRA PROVINCE
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2723-3871
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044750053
  issn: 2723-3863
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKwoELAgHisSAfuEXpNq_aPoaStlnapAoBLafKdRxtaTe7WrrVcuHf8D-ZyaMNC0LsgUuUWPEoznz6PDMeewh54_SZm2m1MB1wqE03Y8KU2nbNnAnL7i2ExRdl1ZIJiyJ-ciJmnc6PZi_Mds2Kgl9fi4v_qmpoA2Xj1tlbqHsnFBrgHpQOV1A7XP9J8bN44r83k_BtGCSBMYij448jPw2MUeKD7Relhj8ZxUmYjqdGGKEG3oWDFGNWmPwzC5IBvIPLTPHQiGdBBB5iMJ1N4s946j_2iOIkHRvAxn6a-NA__hTW9Zx2Rm5l46Z6VSxXRr3habNcSTRnj2HoeTv-cCbX32RN9PvwwIfz9XJ1elVFZ-v7doTCxqyWhtpLIrOZ7ZgOr4lMt9uq8isNE3u_Aa5i1VpYNT9Xh8HcZH7PdsvaNFb3Cw6ji9_R9boWrmGz_VzXrO_fmAJ3iYngEpWS5uAVoZw5ypl78Ihy7pC7NvMEZg5OvwcNbeGRichlWMawGWm1F70UdfTHT2qZQS17Jn1IHtSOCPUrAD0iHV08JttfwEN34KENeOgOPDSM6B48FMBD9-Ch8ZAieGgbPNijBA-twUMb8Dwh6TBIB2OzrsxhKuEx0-La0bmVqx4mTmnbUfAXetJmSjiKZwKTfLklJfd6WuSOBBdDZZklF5xnamFr5yk5KM4L_YzQXOm-J5WyFBeuK3pSyb7uK87cXDtS9J-To-Y_zS-q81fmf1fSi1v3eEnu72F7SA42l1f6Fbmntpvl18vXpa5_AoAqbWY
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=POLAK-RIBIERE+CONJUGATE+GRADIENT+ALGORITHM+IN+PREDICTING+THE+PERCENTAGE+OF+OPEN+UNEMPLOYMENT+IN+NORTH+SUMATRA+PROVINCE&rft.jtitle=Jurnal+Teknik+Informatika+%28Jutif%29&rft.au=Amalya%2C+Nanda&rft.au=Solikhun%2C+Solikhun&rft.date=2024-01-31&rft.issn=2723-3863&rft.eissn=2723-3871&rft.volume=5&rft.issue=1&rft.spage=31&rft.epage=38&rft_id=info:doi/10.52436%2F1.jutif.2024.5.1.1047&rft.externalDBID=n%2Fa&rft.externalDocID=10_52436_1_jutif_2024_5_1_1047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2723-3863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2723-3863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2723-3863&client=summon