Landscape and variation of RNA secondary structure across the human transcriptome

An RNA secondary structure (RSS) map of coding and noncoding RNA from a human family (two parents and their child) is produced; this reveals that approximately 15% of all transcribed single nucleotide variants (SNVs) alter local RNA structure, and these SNVs are depleted in certain locations, sugges...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature (London) Ročník 505; číslo 7485; s. 706 - 709
Hlavní autoři: Wan, Yue, Qu, Kun, Zhang, Qiangfeng Cliff, Flynn, Ryan A., Manor, Ohad, Ouyang, Zhengqing, Zhang, Jiajing, Spitale, Robert C., Snyder, Michael P., Segal, Eran, Chang, Howard Y.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 30.01.2014
Nature Publishing Group
Témata:
ISSN:0028-0836, 1476-4687, 1476-4687
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract An RNA secondary structure (RSS) map of coding and noncoding RNA from a human family (two parents and their child) is produced; this reveals that approximately 15% of all transcribed single nucleotide variants (SNVs) alter local RNA structure, and these SNVs are depleted in certain locations, suggesting that particular RNA structures are important at those sites. Probing the in vivo RNA structurome Being single-stranded, RNA can adopt a diversity of secondary structures via inter- and intramolecular base-pairing. Three studies published in this issue of Nature provide an in-depth view of the variety, dynamics and functional influence of RNA structures in vivo . Sarah Assmann and colleagues map the in vivo RNA structure of over 10,000 transcripts in the model plant Arabidopsis thaliana . Their struc-seq (structure-seqence) approach incorporates in vivo chemical (DMS) probing and next-generation sequencing to provide single-nucleotide resolution on a genome-wide scale. Distinct patterns of structure are found to be correlated with coding regions, splice sites and polyadenylation sites. Comparison of these results with those obtained by earlier technologies reveals that, although predictions for some classes of genes were fairly accurate, others, such as those involved in stress response, were poorly predicted and may reflect changes that made them more adapted to that condition. Jonathan Weissman and colleagues have also developed a DMS-seq method to globally monitor RNA structure to single-nucleotide precision in yeast and mammalian cells. Comparing their findings with in vitro data, the authors conclude that there is less structure within cells than expected. Even thermostable RNA structures can be denatured in cells, highlighting the importance of cellular processes in regulating RNA structure. Howard Chang and colleagues asked a different question: how does RNA secondary structure change on a transcriptome-wide level in related individuals? By calculating the RNA secondary structures of two parents and their child, they find that about 15% of transcribed single-nucleotide variants affect local secondary structure. These 'RiboSNitches' are depleted in certain locations, suggesting that a particular RNA structure at that site is important. This study illustrates that there is much to be learned about how changes in RNA structure, particularly as imparted by genetic variation, can alter gene expression. In parallel to the genetic code for protein synthesis, a second layer of information is embedded in all RNA transcripts in the form of RNA structure. RNA structure influences practically every step in the gene expression program 1 . However, the nature of most RNA structures or effects of sequence variation on structure are not known. Here we report the initial landscape and variation of RNA secondary structures (RSSs) in a human family trio (mother, father and their child). This provides a comprehensive RSS map of human coding and non-coding RNAs. We identify unique RSS signatures that demarcate open reading frames and splicing junctions, and define authentic microRNA-binding sites. Comparison of native deproteinized RNA isolated from cells versus refolded purified RNA suggests that the majority of the RSS information is encoded within RNA sequence. Over 1,900 transcribed single nucleotide variants (approximately 15% of all transcribed single nucleotide variants) alter local RNA structure. We discover simple sequence and spacing rules that determine the ability of point mutations to impact RSSs. Selective depletion of ‘riboSNitches’ versus structurally synonymous variants at precise locations suggests selection for specific RNA shapes at thousands of sites, including 3′ untranslated regions, binding sites of microRNAs and RNA-binding proteins genome-wide. These results highlight the potentially broad contribution of RNA structure and its variation to gene regulation.
AbstractList An RNA secondary structure (RSS) map of coding and noncoding RNA from a human family (two parents and their child) is produced; this reveals that approximately 15% of all transcribed single nucleotide variants (SNVs) alter local RNA structure, and these SNVs are depleted in certain locations, suggesting that particular RNA structures are important at those sites. Probing the in vivo RNA structurome Being single-stranded, RNA can adopt a diversity of secondary structures via inter- and intramolecular base-pairing. Three studies published in this issue of Nature provide an in-depth view of the variety, dynamics and functional influence of RNA structures in vivo. Sarah Assmann and colleagues map the in vivo RNA structure of over 10,000 transcripts in the model plant Arabidopsis thaliana. Their struc-seq (structure-seqence) approach incorporates in vivo chemical (DMS) probing and next-generation sequencing to provide single-nucleotide resolution on a genome-wide scale. Distinct patterns of structure are found to be correlated with coding regions, splice sites and polyadenylation sites. Comparison of these results with those obtained by earlier technologies reveals that, although predictions for some classes of genes were fairly accurate, others, such as those involved in stress response, were poorly predicted and may reflect changes that made them more adapted to that condition. Jonathan Weissman and colleagues have also developed a DMS-seq method to globally monitor RNA structure to single-nucleotide precision in yeast and mammalian cells. Comparing their findings with in vitro data, the authors conclude that there is less structure within cells than expected. Even thermostable RNA structures can be denatured in cells, highlighting the importance of cellular processes in regulating RNA structure. Howard Chang and colleagues asked a different question: how does RNA secondary structure change on a transcriptome-wide level in related individuals? By calculating the RNA secondary structures of two parents and their child, they find that about 15% of transcribed single-nucleotide variants affect local secondary structure. These 'RiboSNitches' are depleted in certain locations, suggesting that a particular RNA structure at that site is important. This study illustrates that there is much to be learned about how changes in RNA structure, particularly as imparted by genetic variation, can alter gene expression. In parallel to the genetic code for protein synthesis, a second layer of information is embedded in all RNA transcripts in the form of RNA structure. RNA structure influences practically every step in the gene expression program.sup.1. However, the nature of most RNA structures or effects of sequence variation on structure are not known. Here we report the initial landscape and variation of RNA secondary structures (RSSs) in a human family trio (mother, father and their child). This provides a comprehensive RSS map of human coding and non-coding RNAs. We identify unique RSS signatures that demarcate open reading frames and splicing junctions, and define authentic microRNA-binding sites. Comparison of native deproteinized RNA isolated from cells versus refolded purified RNA suggests that the majority of the RSS information is encoded within RNA sequence. Over 1,900 transcribed single nucleotide variants (approximately 15% of all transcribed single nucleotide variants) alter local RNA structure. We discover simple sequence and spacing rules that determine the ability of point mutations to impact RSSs. Selective depletion of 'riboSNitches' versus structurally synonymous variants at precise locations suggests selection for specific RNA shapes at thousands of sites, including 3' untranslated regions, binding sites of microRNAs and RNA-binding proteins genome-wide. These results highlight the potentially broad contribution of RNA structure and its variation to gene regulation.
In parallel to the genetic code for protein synthesis, a second layer of information is embedded in all RNA transcripts in the form of RNA structure. RNA structure influences practically every step in the gene expression program1. Yet the nature of most RNA structures or effects of sequence variation on structure are not known. Here we report the initial landscape and variation of RNA secondary structures (RSS) in a human family Trio, providing a comprehensive RSS map of human coding and noncoding RNAs. We identify unique RSS signatures that demarcate open reading frames, splicing junctions, and define authentic microRNA binding sites. Comparison of native deproteinized RNA isolated from cells versus refolded purified RNA suggests that the majority of the RSS information is encoded within RNA sequence. Over 1900 transcribed single nucleotide variants (~15% of all transcribed SNVs) alter local RNA structure. We discover simple sequence and spacing rules that determine the ability of point mutations to impact RSS. Selective depletion of RiboSNitches versus structurally synonymous variants at precise locations suggests selection for specific RNA shapes at thousands of sites, including 3’UTRs, binding sites of miRNAs and RNA binding proteins genome-wide. These results highlight the potentially broad contribution of RNA structure and its variation to gene regulation.
An RNA secondary structure (RSS) map of coding and noncoding RNA from a human family (two parents and their child) is produced; this reveals that approximately 15% of all transcribed single nucleotide variants (SNVs) alter local RNA structure, and these SNVs are depleted in certain locations, suggesting that particular RNA structures are important at those sites. Probing the in vivo RNA structurome Being single-stranded, RNA can adopt a diversity of secondary structures via inter- and intramolecular base-pairing. Three studies published in this issue of Nature provide an in-depth view of the variety, dynamics and functional influence of RNA structures in vivo . Sarah Assmann and colleagues map the in vivo RNA structure of over 10,000 transcripts in the model plant Arabidopsis thaliana . Their struc-seq (structure-seqence) approach incorporates in vivo chemical (DMS) probing and next-generation sequencing to provide single-nucleotide resolution on a genome-wide scale. Distinct patterns of structure are found to be correlated with coding regions, splice sites and polyadenylation sites. Comparison of these results with those obtained by earlier technologies reveals that, although predictions for some classes of genes were fairly accurate, others, such as those involved in stress response, were poorly predicted and may reflect changes that made them more adapted to that condition. Jonathan Weissman and colleagues have also developed a DMS-seq method to globally monitor RNA structure to single-nucleotide precision in yeast and mammalian cells. Comparing their findings with in vitro data, the authors conclude that there is less structure within cells than expected. Even thermostable RNA structures can be denatured in cells, highlighting the importance of cellular processes in regulating RNA structure. Howard Chang and colleagues asked a different question: how does RNA secondary structure change on a transcriptome-wide level in related individuals? By calculating the RNA secondary structures of two parents and their child, they find that about 15% of transcribed single-nucleotide variants affect local secondary structure. These 'RiboSNitches' are depleted in certain locations, suggesting that a particular RNA structure at that site is important. This study illustrates that there is much to be learned about how changes in RNA structure, particularly as imparted by genetic variation, can alter gene expression. In parallel to the genetic code for protein synthesis, a second layer of information is embedded in all RNA transcripts in the form of RNA structure. RNA structure influences practically every step in the gene expression program 1 . However, the nature of most RNA structures or effects of sequence variation on structure are not known. Here we report the initial landscape and variation of RNA secondary structures (RSSs) in a human family trio (mother, father and their child). This provides a comprehensive RSS map of human coding and non-coding RNAs. We identify unique RSS signatures that demarcate open reading frames and splicing junctions, and define authentic microRNA-binding sites. Comparison of native deproteinized RNA isolated from cells versus refolded purified RNA suggests that the majority of the RSS information is encoded within RNA sequence. Over 1,900 transcribed single nucleotide variants (approximately 15% of all transcribed single nucleotide variants) alter local RNA structure. We discover simple sequence and spacing rules that determine the ability of point mutations to impact RSSs. Selective depletion of ‘riboSNitches’ versus structurally synonymous variants at precise locations suggests selection for specific RNA shapes at thousands of sites, including 3′ untranslated regions, binding sites of microRNAs and RNA-binding proteins genome-wide. These results highlight the potentially broad contribution of RNA structure and its variation to gene regulation.
In parallel to the genetic code for protein synthesis, a second layer of information is embedded in all RNA transcripts in the form of RNA structure. RNA structure influences practically every step in the gene expression program. However, the nature of most RNA structures or effects of sequence variation on structure are not known. Here we report the initial landscape and variation of RNA secondary structures (RSSs) in a human family trio (mother, father and their child). This provides a comprehensive RSS map of human coding and non-coding RNAs. We identify unique RSS signatures that demarcate open reading frames and splicing junctions, and define authentic microRNA-binding sites. Comparison of native deproteinized RNA isolated from cells versus refolded purified RNA suggests that the majority of the RSS information is encoded within RNA sequence. Over 1,900 transcribed single nucleotide variants (approximately 15% of all transcribed single nucleotide variants) alter local RNA structure. We discover simple sequence and spacing rules that determine the ability of point mutations to impact RSSs. Selective depletion of 'riboSNitches' versus structurally synonymous variants at precise locations suggests selection for specific RNA shapes at thousands of sites, including 3' untranslated regions, binding sites of microRNAs and RNA-binding proteins genome-wide. These results highlight the potentially broad contribution of RNA structure and its variation to gene regulation.
In parallel to the genetic code for protein synthesis, a second layer of information is embedded in all RNA transcripts in the form of RNA structure. RNA structure influences practically every step in the gene expression program. However, the nature of most RNA structures or effects of sequence variation on structure are not known. Here we report the initial landscape and variation of RNA secondary structures (RSSs) in a human family trio (mother, father and their child). This provides a comprehensive RSS map of human coding and non-coding RNAs. We identify unique RSS signatures that demarcate open reading frames and splicing junctions, and define authentic microRNA-binding sites. Comparison of native deproteinized RNA isolated from cells versus refolded purified RNA suggests that the majority of the RSS information is encoded within RNA sequence. Over 1,900 transcribed single nucleotide variants (approximately 15% of all transcribed single nucleotide variants) alter local RNA structure. We discover simple sequence and spacing rules that determine the ability of point mutations to impact RSSs. Selective depletion of 'riboSNitches' versus structurally synonymous variants at precise locations suggests selection for specific RNA shapes at thousands of sites, including 3' untranslated regions, binding sites of microRNAs and RNA-binding proteins genome-wide. These results highlight the potentially broad contribution of RNA structure and its variation to gene regulation.In parallel to the genetic code for protein synthesis, a second layer of information is embedded in all RNA transcripts in the form of RNA structure. RNA structure influences practically every step in the gene expression program. However, the nature of most RNA structures or effects of sequence variation on structure are not known. Here we report the initial landscape and variation of RNA secondary structures (RSSs) in a human family trio (mother, father and their child). This provides a comprehensive RSS map of human coding and non-coding RNAs. We identify unique RSS signatures that demarcate open reading frames and splicing junctions, and define authentic microRNA-binding sites. Comparison of native deproteinized RNA isolated from cells versus refolded purified RNA suggests that the majority of the RSS information is encoded within RNA sequence. Over 1,900 transcribed single nucleotide variants (approximately 15% of all transcribed single nucleotide variants) alter local RNA structure. We discover simple sequence and spacing rules that determine the ability of point mutations to impact RSSs. Selective depletion of 'riboSNitches' versus structurally synonymous variants at precise locations suggests selection for specific RNA shapes at thousands of sites, including 3' untranslated regions, binding sites of microRNAs and RNA-binding proteins genome-wide. These results highlight the potentially broad contribution of RNA structure and its variation to gene regulation.
An RNA secondary structure (RSS) map of coding and noncoding RNA from a human family (two parents and their child) is produced; this reveals that approximately 15% of all transcribed single nucleotide variants (SNVs) alter local RNA structure, and these SNVs are depleted in certain locations, suggesting that particular RNA structures are important at those sites.
In parallel to the genetic code for protein synthesis, a second layer of information is embedded in all RNA transcripts in the form of RNA structure. RNA structure influences practically every step in the gene expression program. However, the nature of most RNA structures or effects of sequence variation on structure are not known. Here we report the initial landscape and variation of RNA secondary structures (RSSs) in a human family trio (mother, father and their child). This provides a comprehensive RSS map of human coding and non-coding RNAs. We identify unique RSS signatures that demarcate open reading frames and splicing junctions, and define authentic microRNA-binding sites. Comparison of native deproteinized RNA isolated from cells versus refolded purified RNA suggests that the majority of the RSS information is encoded within RNA sequence. Over 1,900 transcribed single nucleotide variants (approximately 15% of all transcribed single nucleotide variants) alter local RNA structure. We discover simple sequence and spacing rules that determine the ability of point mutations to impact RSSs. Selective depletion of 'riboSNitches' versus structurally synonymous variants at precise locations suggests selection for specific RNA shapes at thousands of sites, including 3' untranslated regions, binding sites of microRNAs and RNA-binding proteins genome-wide. These results highlight the potentially broad contribution of RNA structure and its variation to gene regulation. [PUBLICATION ABSTRACT]
Audience Academic
Author Wan, Yue
Flynn, Ryan A.
Zhang, Jiajing
Spitale, Robert C.
Manor, Ohad
Qu, Kun
Chang, Howard Y.
Segal, Eran
Snyder, Michael P.
Zhang, Qiangfeng Cliff
Ouyang, Zhengqing
AuthorAffiliation 1 Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
5 Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305
2 Genome Institute of Singapore, Singapore 138672
3 Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovet 76100, Israel
AuthorAffiliation_xml – name: 3 Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovet 76100, Israel
– name: 5 Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305
– name: 1 Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
– name: 2 Genome Institute of Singapore, Singapore 138672
Author_xml – sequence: 1
  givenname: Yue
  surname: Wan
  fullname: Wan, Yue
  email: wany@gis.a-star.edu.sg
  organization: Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stem Cell and Development, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672
– sequence: 2
  givenname: Kun
  surname: Qu
  fullname: Qu, Kun
  organization: Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine
– sequence: 3
  givenname: Qiangfeng Cliff
  surname: Zhang
  fullname: Zhang, Qiangfeng Cliff
  organization: Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine
– sequence: 4
  givenname: Ryan A.
  surname: Flynn
  fullname: Flynn, Ryan A.
  organization: Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine
– sequence: 5
  givenname: Ohad
  surname: Manor
  fullname: Manor, Ohad
  organization: Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovet 76100, Israel
– sequence: 6
  givenname: Zhengqing
  surname: Ouyang
  fullname: Ouyang, Zhengqing
  organization: Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Present address: The Jackson Laboratory for Genomic Medicine, 263 Farmington Avenue, ASB Call Box 901 Farmington, Connecticut 06030, USA
– sequence: 7
  givenname: Jiajing
  surname: Zhang
  fullname: Zhang, Jiajing
  organization: Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine
– sequence: 8
  givenname: Robert C.
  surname: Spitale
  fullname: Spitale, Robert C.
  organization: Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine
– sequence: 9
  givenname: Michael P.
  surname: Snyder
  fullname: Snyder, Michael P.
  organization: Department of Genetics, Stanford University School of Medicine
– sequence: 10
  givenname: Eran
  surname: Segal
  fullname: Segal, Eran
  organization: Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovet 76100, Israel
– sequence: 11
  givenname: Howard Y.
  surname: Chang
  fullname: Chang, Howard Y.
  email: howchang@stanford.edu
  organization: Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24476892$$D View this record in MEDLINE/PubMed
BookMark eNqNk81v0zAUwCM0xLrBiTuK2AUEGf6q7VyQqmrApGqIMcTRch2n9ZTYne1M8N_PXfeRooxNOSRyfu_3nu339rId66zOstcQHEKA-ScrY-c1RCWhz7IRJIwWhHK2k40AQLwAHNPdbC-EcwDAGDLyIttFJFG8RKPsx0zaKii50nn6yC-lNzIaZ3NX56cnkzxo5Wwl_d88RN-pdaZcKu9CyONS58uulTaPXtqgvFlF1-qX2fNaNkG_unnvZ7--HJ1NvxWz71-Pp5NZocoxjgUBDCNeU8VkxQEERFI0L4ksMcGo5nBMa4DYHM9ZRQiCUmsCoSyZpBzUrJR4P_u88a66easrpW0qoxErb9pUrnDSiO0_1izFwl0KXDLMCEuCdzcC7y46HaJoTVC6aaTVrgsCkhKzkiJKE3rwD3ruOm_T9tYUB5xxgu-phWy0MLZ2Ka9aS8WEMoIQRvj_FKYQjyGFKFHFALXQVqetpPuvTVresj6F7_vfDvBqZS5EX_og1DcdDkDpqXRr1GCpTwroZ3i_FZCYqP_EhexCEMc_T7flj7F974eH2cnZ7-nJtvlxuu9-0-_Ou7a8nbwEwA1wPUxe10KZeD166TRMIyAQ6-kWvem-L-Eu5lY7TH_c0CFRdqF9r2kH8Cs3_FX5
CODEN NATUAS
CitedBy_id crossref_primary_10_1093_nar_gkaa404
crossref_primary_10_1093_plcell_koad026
crossref_primary_10_1534_genetics_119_302058
crossref_primary_10_3390_ncrna5010015
crossref_primary_10_1016_j_cell_2015_01_005
crossref_primary_10_1016_j_bbagrm_2015_09_011
crossref_primary_10_1016_j_copbio_2016_03_019
crossref_primary_10_1021_acs_chemrev_7b00504
crossref_primary_10_1186_s12859_024_05704_x
crossref_primary_10_1093_hmg_ddad057
crossref_primary_10_1016_j_cell_2025_06_007
crossref_primary_10_1002_wrna_1601
crossref_primary_10_1186_s12864_018_4497_0
crossref_primary_10_1073_pnas_1807988115
crossref_primary_10_1038_s41422_019_0230_z
crossref_primary_10_1007_s00439_022_02500_6
crossref_primary_10_1016_j_gpb_2017_05_002
crossref_primary_10_1093_nar_gkaf780
crossref_primary_10_1038_s41587_020_0712_z
crossref_primary_10_1002_ijch_202300073
crossref_primary_10_1093_nar_gkae334
crossref_primary_10_1016_j_ygeno_2018_11_019
crossref_primary_10_1371_journal_pcbi_1012715
crossref_primary_10_1016_j_jbc_2021_101248
crossref_primary_10_1101_gr_209015_116
crossref_primary_10_1007_s11427_021_2116_2
crossref_primary_10_1038_nrm_2016_132
crossref_primary_10_1111_cpr_13578
crossref_primary_10_1146_annurev_genom_120219_073756
crossref_primary_10_1016_j_bbagrm_2015_10_010
crossref_primary_10_1017_S0033583516000020
crossref_primary_10_1093_nar_gkaa1208
crossref_primary_10_1101_gad_310896_117
crossref_primary_10_1016_j_neuron_2015_09_045
crossref_primary_10_3389_fmolb_2018_00111
crossref_primary_10_1186_s43046_025_00266_2
crossref_primary_10_3390_ijms241915002
crossref_primary_10_1186_s12915_022_01448_3
crossref_primary_10_1093_nar_gky012
crossref_primary_10_1038_nature14234
crossref_primary_10_1002_wrna_1291
crossref_primary_10_1038_nrm_2016_139
crossref_primary_10_1093_nar_gkae220
crossref_primary_10_3390_biology14040442
crossref_primary_10_1186_s13059_021_02379_y
crossref_primary_10_15252_msb_20167375
crossref_primary_10_1093_gigascience_giab023
crossref_primary_10_1096_fj_202500461R
crossref_primary_10_1021_jacs_8b10558
crossref_primary_10_1038_s41467_022_31875_3
crossref_primary_10_1007_s10295_018_2004_x
crossref_primary_10_1016_j_fmre_2021_12_007
crossref_primary_10_1002_wrna_1626
crossref_primary_10_1038_s41422_018_0040_8
crossref_primary_10_1186_s13059_019_1880_3
crossref_primary_10_1093_nar_gkw048
crossref_primary_10_1101_gr_214973_116
crossref_primary_10_3389_fimmu_2022_1031200
crossref_primary_10_1016_j_ccell_2016_03_010
crossref_primary_10_1261_rna_047068_114
crossref_primary_10_1242_dev_200398
crossref_primary_10_1038_nmeth_3029
crossref_primary_10_1093_nargab_lqaf066
crossref_primary_10_1002_cbic_202000445
crossref_primary_10_1016_j_cell_2016_03_030
crossref_primary_10_1038_mtna_2014_45
crossref_primary_10_1146_annurev_arplant_043015_111754
crossref_primary_10_1038_523398a
crossref_primary_10_1038_s41594_020_0461_1
crossref_primary_10_1016_j_bbrc_2014_08_139
crossref_primary_10_1038_ni_2887
crossref_primary_10_1093_nargab_lqab007
crossref_primary_10_3389_fphar_2022_984453
crossref_primary_10_1016_j_tig_2018_08_001
crossref_primary_10_1186_s13578_020_00479_z
crossref_primary_10_1038_s41598_020_68459_4
crossref_primary_10_1261_rna_067868_118
crossref_primary_10_1186_s13059_019_1641_3
crossref_primary_10_1002_wrna_1518
crossref_primary_10_1016_j_vaccine_2023_07_024
crossref_primary_10_1089_cmb_2024_0519
crossref_primary_10_1016_j_cej_2022_136864
crossref_primary_10_1038_nrg3700
crossref_primary_10_1371_journal_pone_0128769
crossref_primary_10_1016_j_jmb_2015_05_018
crossref_primary_10_1111_nyas_14051
crossref_primary_10_3389_fimmu_2018_03138
crossref_primary_10_1093_nar_gkx141
crossref_primary_10_1093_brain_awac326
crossref_primary_10_1093_nar_gkaa880
crossref_primary_10_1038_s42256_021_00412_0
crossref_primary_10_1007_s00294_015_0551_5
crossref_primary_10_1093_bib_bbv026
crossref_primary_10_1016_j_leukres_2024_107499
crossref_primary_10_1093_nsr_nwu008
crossref_primary_10_1016_j_neuron_2016_02_004
crossref_primary_10_1186_s13059_025_03590_x
crossref_primary_10_3390_ijms16011395
crossref_primary_10_1186_s13059_021_02549_y
crossref_primary_10_1007_s00439_021_02395_9
crossref_primary_10_1016_j_jmb_2016_02_005
crossref_primary_10_1146_annurev_arplant_083123_055521
crossref_primary_10_1261_rna_072850_119
crossref_primary_10_1038_nrg3813
crossref_primary_10_1186_s12860_020_00297_8
crossref_primary_10_1016_j_ymeth_2018_11_019
crossref_primary_10_1128_JVI_02190_20
crossref_primary_10_1016_j_jmb_2016_04_017
crossref_primary_10_15252_msb_156240
crossref_primary_10_1038_nmeth_4057
crossref_primary_10_1016_j_tibs_2015_02_005
crossref_primary_10_1038_s41580_025_00857_w
crossref_primary_10_3389_fcell_2020_00242
crossref_primary_10_1093_molbev_msw012
crossref_primary_10_1016_j_molcel_2018_10_047
crossref_primary_10_1038_s41467_021_22549_7
crossref_primary_10_1007_s12031_016_0745_4
crossref_primary_10_1007_s00438_018_1420_y
crossref_primary_10_1038_s41589_019_0459_3
crossref_primary_10_1093_nar_gkaa577
crossref_primary_10_1093_nar_gkac756
crossref_primary_10_1016_j_fmre_2023_06_001
crossref_primary_10_1007_s11427_019_1658_x
crossref_primary_10_1007_s11904_014_0240_x
crossref_primary_10_1093_nar_gkx646
crossref_primary_10_1093_nar_gky613
crossref_primary_10_1186_s13059_018_1399_z
crossref_primary_10_1371_journal_pone_0271616
crossref_primary_10_1038_nature14280
crossref_primary_10_1089_cmb_2023_0283
crossref_primary_10_1002_wrna_1253
crossref_primary_10_1002_wrna_1374
crossref_primary_10_1093_nar_gkw671
crossref_primary_10_1093_molbev_msw028
crossref_primary_10_1021_ja513080v
crossref_primary_10_1038_s41594_020_0398_4
crossref_primary_10_1039_C8CC01134F
crossref_primary_10_1093_molbev_msu402
crossref_primary_10_1134_S0026893316060170
crossref_primary_10_1016_j_tibs_2015_12_009
crossref_primary_10_1038_s41467_021_25078_5
crossref_primary_10_1186_s13059_014_0491_2
crossref_primary_10_3390_genes9060300
crossref_primary_10_1088_1742_6596_1650_3_032164
crossref_primary_10_1093_nar_gkx1107
crossref_primary_10_1016_j_humgen_2023_201226
crossref_primary_10_1371_journal_pone_0179040
crossref_primary_10_3389_fcimb_2014_00132
crossref_primary_10_1016_j_bbrc_2017_02_100
crossref_primary_10_1016_j_ccell_2016_10_004
crossref_primary_10_1038_nrm_2016_163
crossref_primary_10_1016_j_mib_2017_01_003
crossref_primary_10_1042_BST20170422
crossref_primary_10_1038_s41586_020_2253_5
crossref_primary_10_3389_fpls_2018_00671
crossref_primary_10_1186_s13059_020_02022_2
crossref_primary_10_1093_nar_gky389
crossref_primary_10_1093_nar_gku342
crossref_primary_10_1261_rna_064469_117
crossref_primary_10_1016_j_chembiol_2020_01_003
crossref_primary_10_1038_nature14263
crossref_primary_10_1111_febs_17368
crossref_primary_10_1016_j_molcel_2016_04_028
crossref_primary_10_1016_j_ceb_2015_04_007
crossref_primary_10_3390_ijms17050702
crossref_primary_10_1002_1873_3468_14673
crossref_primary_10_1016_j_biomaterials_2017_02_033
crossref_primary_10_3389_fcell_2014_00039
crossref_primary_10_1101_gad_262766_115
crossref_primary_10_1038_s41580_024_00748_6
crossref_primary_10_1101_gr_166322_113
crossref_primary_10_1042_BST20160075
crossref_primary_10_1093_molbev_msaf126
crossref_primary_10_1007_s13258_021_01194_w
crossref_primary_10_1186_s12929_017_0358_4
crossref_primary_10_1002_wrna_1712
crossref_primary_10_1016_j_arr_2014_12_008
crossref_primary_10_1016_j_chembiol_2023_12_010
crossref_primary_10_3390_ijms21186770
crossref_primary_10_1021_jacs_4c03753
crossref_primary_10_1038_nprot_2015_064
crossref_primary_10_1016_j_jmb_2021_167159
crossref_primary_10_1016_j_molcel_2016_04_030
crossref_primary_10_1002_bies_201300146
crossref_primary_10_1073_pnas_1424217112
crossref_primary_10_1186_s13059_022_02656_4
crossref_primary_10_7554_eLife_69803
crossref_primary_10_1007_s40484_020_0205_6
crossref_primary_10_7554_eLife_39054
crossref_primary_10_1038_s41598_017_15822_7
crossref_primary_10_1002_jez_b_22930
crossref_primary_10_1016_j_pbi_2015_05_021
crossref_primary_10_15252_embr_201540955
crossref_primary_10_3390_ijms20225610
crossref_primary_10_1093_bib_bbz036
crossref_primary_10_1093_nar_gkw1094
crossref_primary_10_1261_rna_060467_116
crossref_primary_10_1038_nbt_3289
crossref_primary_10_1093_nar_gku909
crossref_primary_10_1016_j_tibs_2016_08_009
crossref_primary_10_1016_j_bbagrm_2019_194439
crossref_primary_10_1093_bib_bbu018
crossref_primary_10_1093_bib_bbv106
crossref_primary_10_1016_j_ygeno_2016_01_005
crossref_primary_10_1261_rna_063073_117
crossref_primary_10_1261_rna_062802_117
crossref_primary_10_7554_eLife_22037
crossref_primary_10_1002_bies_201300174
crossref_primary_10_1007_s11427_024_2609_8
crossref_primary_10_1186_s13148_019_0648_7
crossref_primary_10_1016_j_tig_2015_01_001
crossref_primary_10_1016_j_canlet_2022_215677
crossref_primary_10_1093_nar_gkv010
crossref_primary_10_1038_s41586_023_06500_y
crossref_primary_10_1038_nsmb_2921
crossref_primary_10_1016_j_molcel_2024_06_036
crossref_primary_10_1038_s41467_019_13527_1
crossref_primary_10_3389_fcell_2021_766532
crossref_primary_10_1093_nar_gkv1308
crossref_primary_10_1016_j_csbj_2021_05_030
crossref_primary_10_1038_s41467_019_10923_5
crossref_primary_10_1016_j_cell_2014_10_040
crossref_primary_10_1007_s11033_025_10906_4
crossref_primary_10_1093_bib_bbab082
crossref_primary_10_3389_fonc_2022_896840
crossref_primary_10_1007_s00439_017_1783_x
crossref_primary_10_1038_s41594_018_0091_z
crossref_primary_10_1093_nar_gkv706
crossref_primary_10_1016_j_bbagrm_2015_07_014
crossref_primary_10_1186_s12859_019_2645_4
crossref_primary_10_3389_fgene_2017_00032
crossref_primary_10_1101_gr_191122_115
crossref_primary_10_1002_anie_201505938
crossref_primary_10_1007_s00335_021_09924_x
crossref_primary_10_1038_srep16037
crossref_primary_10_1073_pnas_1523004113
crossref_primary_10_1007_s40484_017_0093_6
crossref_primary_10_1111_bjd_17640
crossref_primary_10_1093_nargab_lqab073
crossref_primary_10_1016_j_sbi_2024_102915
crossref_primary_10_1097_j_pain_0000000000000258
crossref_primary_10_1016_j_it_2017_06_001
crossref_primary_10_3389_fmicb_2024_1362067
crossref_primary_10_1093_humupd_dmw035
crossref_primary_10_3389_fpls_2022_868771
crossref_primary_10_3390_ijms22063262
crossref_primary_10_1038_s41467_017_01458_8
crossref_primary_10_1002_iub_2673
crossref_primary_10_1038_nrendo_2014_229
crossref_primary_10_1016_j_tig_2018_06_002
crossref_primary_10_1038_s41422_021_00476_y
crossref_primary_10_1038_srep28977
crossref_primary_10_1182_blood_2016_02_699686
crossref_primary_10_1038_nrg3681
crossref_primary_10_1038_nrm4032
crossref_primary_10_1038_s41588_020_0644_z
crossref_primary_10_3389_fgene_2019_00309
crossref_primary_10_1016_j_cell_2018_02_034
crossref_primary_10_1038_s41594_018_0100_2
crossref_primary_10_1007_s40484_018_0146_5
crossref_primary_10_1016_j_csbj_2023_01_007
crossref_primary_10_1186_s12859_021_04102_x
crossref_primary_10_1002_advs_202004168
crossref_primary_10_1016_j_jbior_2023_100975
crossref_primary_10_3390_nu14193990
crossref_primary_10_1186_s12929_016_0270_3
crossref_primary_10_3389_fcimb_2021_673966
crossref_primary_10_1016_j_ymeth_2014_10_003
crossref_primary_10_3390_biom13101497
crossref_primary_10_1038_s41467_024_48244_x
crossref_primary_10_3390_molecules24081613
crossref_primary_10_1038_s41592_022_01623_y
crossref_primary_10_1016_j_bbagrm_2019_04_008
crossref_primary_10_1016_j_sbi_2016_01_007
crossref_primary_10_1016_j_molcel_2014_08_025
crossref_primary_10_3390_biom15050627
crossref_primary_10_1038_s12276_018_0087_0
crossref_primary_10_1038_s41467_018_06046_y
crossref_primary_10_3390_ijms21228878
crossref_primary_10_1126_science_1260793
crossref_primary_10_1002_wrna_1474
crossref_primary_10_1186_s13059_020_02236_4
crossref_primary_10_1002_wrna_1477
crossref_primary_10_1038_s41573_023_00827_x
crossref_primary_10_15252_embj_201489589
crossref_primary_10_1038_s41588_021_00864_5
crossref_primary_10_1093_bioadv_vbaf012
crossref_primary_10_1261_rna_073601_119
crossref_primary_10_1016_j_jbc_2024_107317
crossref_primary_10_1098_rsob_200091
crossref_primary_10_1371_journal_pone_0243155
crossref_primary_10_1016_j_neuroscience_2016_02_042
crossref_primary_10_3389_fgene_2021_649619
crossref_primary_10_1093_nar_gkx115
crossref_primary_10_1016_j_cell_2015_02_012
crossref_primary_10_1038_s41576_018_0034_x
crossref_primary_10_1101_gr_195164_115
crossref_primary_10_1126_science_aaa1807
crossref_primary_10_1371_journal_pcbi_1007852
crossref_primary_10_1038_nrg3778
crossref_primary_10_1101_gr_208652_116
crossref_primary_10_1210_er_2014_1034
crossref_primary_10_1371_journal_pgen_1005613
crossref_primary_10_3389_fgene_2018_00380
crossref_primary_10_1073_pnas_2112677119
crossref_primary_10_1146_annurev_genet_120215_035034
crossref_primary_10_1007_s00439_024_02667_0
crossref_primary_10_1016_j_csbj_2023_10_036
crossref_primary_10_1016_j_ymeth_2017_06_001
crossref_primary_10_1093_jxb_erab030
crossref_primary_10_1093_nargab_lqaa057
crossref_primary_10_1038_s41594_021_00678_3
crossref_primary_10_1038_s41594_019_0200_7
crossref_primary_10_1261_rna_049221_114
crossref_primary_10_1186_s13046_018_0793_4
crossref_primary_10_1038_s41467_024_48615_4
crossref_primary_10_1073_pnas_2012217117
crossref_primary_10_1371_journal_pone_0139900
crossref_primary_10_1016_j_gene_2022_146694
crossref_primary_10_1186_s12859_020_03914_7
crossref_primary_10_3389_fcell_2020_586479
crossref_primary_10_1016_j_tibs_2018_09_012
crossref_primary_10_1038_s41467_023_41550_w
crossref_primary_10_1038_s41573_022_00521_4
crossref_primary_10_1002_wrna_1426
crossref_primary_10_1371_journal_pone_0183229
crossref_primary_10_3390_insects11090581
crossref_primary_10_1016_j_tibs_2020_03_005
crossref_primary_10_1093_nar_gkv950
crossref_primary_10_1093_nar_gky666
crossref_primary_10_1073_pnas_1908052116
crossref_primary_10_1038_505621a
crossref_primary_10_1016_j_molonc_2015_03_001
crossref_primary_10_1016_j_jaut_2019_102334
crossref_primary_10_1093_nar_gkw362
crossref_primary_10_1093_nar_gkab124
crossref_primary_10_1186_s12859_016_1071_0
crossref_primary_10_1093_nar_gkac212
crossref_primary_10_1261_rna_057364_116
crossref_primary_10_1038_s41586_023_06127_z
crossref_primary_10_1186_s12929_023_00977_5
crossref_primary_10_1186_s12929_020_00640_3
crossref_primary_10_1002_humu_23283
crossref_primary_10_1038_s41598_019_44489_5
crossref_primary_10_1016_j_crmeth_2025_101087
crossref_primary_10_1017_S003358351600007X
crossref_primary_10_1042_BST20140084
crossref_primary_10_1186_s12859_016_1067_9
crossref_primary_10_3390_genes12020239
crossref_primary_10_1111_pcmr_12537
crossref_primary_10_1016_j_ymeth_2015_02_003
crossref_primary_10_1038_s41467_022_28817_4
crossref_primary_10_1261_rna_043844_113
crossref_primary_10_1038_gene_2014_75
crossref_primary_10_1093_nar_gkv166
crossref_primary_10_1016_j_tibtech_2016_11_002
crossref_primary_10_1186_s13015_016_0070_z
crossref_primary_10_1002_ange_201505938
crossref_primary_10_1016_j_cbpa_2021_03_006
crossref_primary_10_1042_BSR20220149
crossref_primary_10_1371_journal_pcbi_1004473
crossref_primary_10_3389_fneur_2017_00025
crossref_primary_10_1186_s12859_018_2078_5
crossref_primary_10_3389_fphar_2018_01437
crossref_primary_10_1093_bib_bby102
crossref_primary_10_1016_j_molp_2018_01_008
crossref_primary_10_1093_nar_gkab250
Cites_doi 10.1038/nature09322
10.1038/nchembio.1131
10.1038/nrg3049
10.1016/j.cell.2004.12.035
10.1371/journal.pgen.1001074
10.1038/nsmb.1838
10.1126/science.1230612
10.1016/j.molcel.2007.06.017
10.1038/nmeth.1528
10.1038/nsmb.2344
10.1093/nar/gks1009
10.1016/j.celrep.2011.10.002
10.1261/rna.033282.112
10.1093/nar/gkl287
10.1371/journal.ppat.1002484
10.1186/gb-2009-10-3-r25
10.1038/nmeth.1923
10.1016/j.cell.2009.01.002
10.1016/j.molcel.2012.08.004
10.1093/nar/gkr1007
10.1038/nature09000
10.1038/nprot.2006.249
10.1038/nature08170
10.1186/1471-2164-13-S4-S6
10.1101/gr.138545.112
10.1038/nature02168
ContentType Journal Article
Copyright Springer Nature Limited 2014
COPYRIGHT 2014 Nature Publishing Group
Copyright Nature Publishing Group Jan 30, 2014
Copyright_xml – notice: Springer Nature Limited 2014
– notice: COPYRIGHT 2014 Nature Publishing Group
– notice: Copyright Nature Publishing Group Jan 30, 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
5PM
DOI 10.1038/nature12946
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database (ProQuest)
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
eLibrary
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
ProQuest - Psychology Database
ProQuest - Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE
MEDLINE - Academic




Agricultural Science Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PATMY
  name: Environmental Science Database
  url: http://search.proquest.com/environmentalscience
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 709
ExternalDocumentID PMC3973747
3218454591
A674223233
A361351612
24476892
10_1038_nature12946
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NHGRI NIH HHS
  grantid: R01 HG004361
– fundername: NHGRI NIH HHS
  grantid: R01-HG004361
– fundername: NCI NIH HHS
  grantid: P30 CA034196
– fundername: Howard Hughes Medical Institute
– fundername: NCI NIH HHS
  grantid: T32 CA009302
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
00M
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3V.
4.4
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
A8Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAKAS
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABAWZ
ABDBF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACUHS
ACWUS
ADBBV
ADFRT
ADUKH
ADYSU
ADZCM
AENEX
AEUYN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
APEBS
ARAPS
ARMCB
ARTTT
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BCU
BDKGC
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DO4
DU5
DWQXO
E.-
E.L
EAD
EAP
EAS
EAZ
EBC
EBD
EBO
EBS
ECC
EE.
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
EPS
ESE
ESN
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PM3
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TH9
TN5
TSG
TUS
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
ZKB
~02
~7V
~88
~8M
~KM
AARCD
AAYXX
ABFSG
ABUFD
ACSTC
ADXHL
AETEA
AFANA
AFFHD
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
ADGHP
CGR
CUY
CVF
ECM
EIF
NPM
ACMFV
AEIIB
PMFND
ESTFP
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c953t-407328f6c7ad80104a62b94a93432f8156f027b3b7d4421aee411a97a680f79a3
IEDL.DBID M7P
ISICitedReferencesCount 425
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000330321000046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0028-0836
1476-4687
IngestDate Tue Nov 04 01:55:32 EST 2025
Thu Oct 02 18:14:47 EDT 2025
Tue Oct 07 07:01:14 EDT 2025
Sat Nov 29 13:11:39 EST 2025
Sat Nov 29 13:10:39 EST 2025
Sat Nov 29 11:29:21 EST 2025
Sat Nov 29 11:44:45 EST 2025
Tue Jun 10 15:34:49 EDT 2025
Tue Jun 10 15:34:39 EDT 2025
Sat Nov 29 09:59:01 EST 2025
Sun Nov 23 08:47:20 EST 2025
Wed Nov 26 09:25:17 EST 2025
Wed Nov 26 09:32:41 EST 2025
Wed Nov 26 10:26:46 EST 2025
Mon Nov 24 14:50:32 EST 2025
Mon Jul 21 06:05:31 EDT 2025
Tue Nov 18 22:36:30 EST 2025
Sat Nov 29 04:12:58 EST 2025
Fri Feb 21 02:37:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7485
Language English
License Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c953t-407328f6c7ad80104a62b94a93432f8156f027b3b7d4421aee411a97a680f79a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Current address: The Jackson Laboratory for Genomic Medicine, 263 Farmington Avenue, ASB Call Box 901Farmington, CT 06030. USA.
These authors contributed equally.
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC3973747
PMID 24476892
PQID 1498087843
PQPubID 40569
PageCount 4
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3973747
proquest_miscellaneous_1493796266
proquest_journals_1498087843
gale_infotracmisc_A674223233
gale_infotracmisc_A361351612
gale_infotracgeneralonefile_A674223233
gale_infotracgeneralonefile_A361351612
gale_infotraccpiq_674223233
gale_infotraccpiq_361351612
gale_infotracacademiconefile_A674223233
gale_infotracacademiconefile_A361351612
gale_incontextgauss_ISR_A674223233
gale_incontextgauss_ISR_A361351612
gale_incontextgauss_ATWCN_A674223233
gale_incontextgauss_ATWCN_A361351612
pubmed_primary_24476892
crossref_citationtrail_10_1038_nature12946
crossref_primary_10_1038_nature12946
springer_journals_10_1038_nature12946
PublicationCentury 2000
PublicationDate 2014-01-30
PublicationDateYYYYMMDD 2014-01-30
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-30
  day: 30
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2014
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Spitale (CR16) 2013; 9
Shabalina, Ogurtsov, Spiridonov (CR4) 2006; 34
Barash (CR5) 2010; 465
Macias (CR26) 2012; 19
Wan, Kertesz, Spitale, Segal, Chang (CR1) 2011; 12
Bartel (CR6) 2009; 136
Skalsky (CR7) 2012; 8
Marín, Voellmy, von Erlach, Vanicek (CR8) 2012; 18
CR12
CR10
Grimson (CR9) 2007; 27
Wilkinson, Merino, Weeks (CR18) 2006; 1
Langmead, Salzberg (CR17) 2012; 9
Lewis, Burge, Bartel (CR19) 2005; 120
Salari, Kimchi-Sarfaty, Gottesman, Przytycka (CR13) 2013; 41
Barbosa-Morais (CR15) 2012; 338
Chi, Zang, Mele, Darnell (CR20) 2009; 460
Wilbert (CR25) 2012; 48
Kertesz (CR2) 2010; 467
Langmead, Trapnell, Pop, Salzberg (CR22) 2009; 10
CR23
Li (CR3) 2012; 1
Katz, Wang, Airoldi, Burge (CR14) 2010; 7
Halvorsen, Martin, Broadaway, Laederach (CR11) 2010; 6
König (CR21) 2010; 17
Anders (CR24) 2012; 40
B Langmead (BFnature12946_CR22) 2009; 10
A Grimson (BFnature12946_CR9) 2007; 27
ML Wilbert (BFnature12946_CR25) 2012; 48
BP Lewis (BFnature12946_CR19) 2005; 120
S Macias (BFnature12946_CR26) 2012; 19
BFnature12946_CR12
R Salari (BFnature12946_CR13) 2013; 41
G Anders (BFnature12946_CR24) 2012; 40
F Li (BFnature12946_CR3) 2012; 1
Y Katz (BFnature12946_CR14) 2010; 7
RC Spitale (BFnature12946_CR16) 2013; 9
KA Wilkinson (BFnature12946_CR18) 2006; 1
B Langmead (BFnature12946_CR17) 2012; 9
M Halvorsen (BFnature12946_CR11) 2010; 6
J König (BFnature12946_CR21) 2010; 17
NL Barbosa-Morais (BFnature12946_CR15) 2012; 338
SW Chi (BFnature12946_CR20) 2009; 460
Y Wan (BFnature12946_CR1) 2011; 12
M Kertesz (BFnature12946_CR2) 2010; 467
BFnature12946_CR23
Y Barash (BFnature12946_CR5) 2010; 465
BFnature12946_CR10
SA Shabalina (BFnature12946_CR4) 2006; 34
DP Bartel (BFnature12946_CR6) 2009; 136
RL Skalsky (BFnature12946_CR7) 2012; 8
RM Marín (BFnature12946_CR8) 2012; 18
20808897 - PLoS Genet. 2010 Aug;6(8):e1001074
20601959 - Nat Struct Mol Biol. 2010 Jul;17(7):909-15
23064747 - Genome Res. 2013 Feb;23(2):377-87
22915600 - RNA. 2012 Oct;18(10):1760-70
20445623 - Nature. 2010 May 6;465(7294):53-9
17612493 - Mol Cell. 2007 Jul 6;27(1):91-105
14685227 - Nature. 2003 Dec 18;426(6968):789-96
23125360 - Nucleic Acids Res. 2013 Jan 7;41(1):44-53
19536157 - Nature. 2009 Jul 23;460(7254):479-86
23258890 - Science. 2012 Dec 21;338(6114):1587-93
23178934 - Nat Chem Biol. 2013 Jan;9(1):18-20
22759654 - BMC Genomics. 2012;13 Suppl 4:S6
20811459 - Nature. 2010 Sep 2;467(7311):103-7
24476882 - Nature. 2014 Jan 30;505(7485):621-2
22086949 - Nucleic Acids Res. 2012 Jan;40(Database issue):D180-6
22832108 - Cell Rep. 2012 Jan 26;1(1):69-82
19167326 - Cell. 2009 Jan 23;136(2):215-33
21850044 - Nat Rev Genet. 2011 Sep;12(9):641-55
15652477 - Cell. 2005 Jan 14;120(1):15-20
19261174 - Genome Biol. 2009;10(3):R25
21057496 - Nat Methods. 2010 Dec;7(12):1009-15
22959275 - Mol Cell. 2012 Oct 26;48(2):195-206
24535248 - Nat Rev Genet. 2014 Apr;15(4):219
22291592 - PLoS Pathog. 2012 Jan;8(1):e1002484
22796965 - Nat Struct Mol Biol. 2012 Aug;19(8):760-6
22388286 - Nat Methods. 2012 Apr;9(4):357-9
16682450 - Nucleic Acids Res. 2006;34(8):2428-37
References_xml – volume: 467
  start-page: 103
  year: 2010
  end-page: 107
  ident: CR2
  article-title: Genome-wide measurement of RNA secondary structure in yeast
  publication-title: Nature
  doi: 10.1038/nature09322
– volume: 9
  start-page: 18
  year: 2013
  end-page: 20
  ident: CR16
  article-title: RNA SHAPE analysis in living cells
  publication-title: Nature Chem. Biol.
  doi: 10.1038/nchembio.1131
– volume: 12
  start-page: 641
  year: 2011
  end-page: 655
  ident: CR1
  article-title: Understanding the transcriptome through RNA structure
  publication-title: Nature Rev. Genet.
  doi: 10.1038/nrg3049
– volume: 120
  start-page: 15
  year: 2005
  end-page: 20
  ident: CR19
  article-title: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets
  publication-title: Cell
  doi: 10.1016/j.cell.2004.12.035
– volume: 6
  start-page: e1001074
  year: 2010
  ident: CR11
  article-title: Disease-associated mutations that alter the RNA structural ensemble
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1001074
– ident: CR12
– ident: CR10
– volume: 17
  start-page: 909
  year: 2010
  end-page: 915
  ident: CR21
  article-title: iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution
  publication-title: Nature Struct. Mol. Biol.
  doi: 10.1038/nsmb.1838
– volume: 338
  start-page: 1587
  year: 2012
  end-page: 1593
  ident: CR15
  article-title: The evolutionary landscape of alternative splicing in vertebrate species
  publication-title: Science
  doi: 10.1126/science.1230612
– volume: 27
  start-page: 91
  year: 2007
  end-page: 105
  ident: CR9
  article-title: MicroRNA targeting specificity in mammals: determinants beyond seed pairing
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.06.017
– volume: 7
  start-page: 1009
  year: 2010
  end-page: 1015
  ident: CR14
  article-title: Analysis and design of RNA sequencing experiments for identifying isoform regulation
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1528
– volume: 19
  start-page: 760
  year: 2012
  end-page: 766
  ident: CR26
  article-title: DGCR8 HITS-CLIP reveals novel functions for the Microprocessor
  publication-title: Nature Struct. Mol. Biol.
  doi: 10.1038/nsmb.2344
– volume: 41
  start-page: 44
  year: 2013
  end-page: 53
  ident: CR13
  article-title: Sensitive measurement of single-nucleotide polymorphism-induced changes of RNA conformation: application to disease studies
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1009
– volume: 1
  start-page: 69
  year: 2012
  end-page: 82
  ident: CR3
  article-title: Global analysis of RNA secondary structure in two metazoans
  publication-title: Cell. Rep.
  doi: 10.1016/j.celrep.2011.10.002
– ident: CR23
– volume: 18
  start-page: 1760
  year: 2012
  end-page: 1770
  ident: CR8
  article-title: Analysis of the accessibility of CLIP bound sites reveals that nucleation of the miRNA:mRNA pairing occurs preferentially at the 3′-end of the seed match
  publication-title: RNA
  doi: 10.1261/rna.033282.112
– volume: 34
  start-page: 2428
  year: 2006
  end-page: 2437
  ident: CR4
  article-title: A periodic pattern of mRNA secondary structure created by the genetic code
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl287
– volume: 8
  start-page: e1002484
  year: 2012
  ident: CR7
  article-title: The viral and cellular microRNA targetome in lymphoblastoid cell lines
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002484
– volume: 10
  start-page: R25
  year: 2009
  ident: CR22
  article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
  publication-title: Genome Biol
  doi: 10.1186/gb-2009-10-3-r25
– volume: 9
  start-page: 357
  year: 2012
  end-page: 359
  ident: CR17
  article-title: Fast gapped-read alignment with Bowtie 2
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1923
– volume: 136
  start-page: 215
  year: 2009
  end-page: 233
  ident: CR6
  article-title: MicroRNAs: target recognition and regulatory functions
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.002
– volume: 48
  start-page: 195
  year: 2012
  end-page: 206
  ident: CR25
  article-title: LIN28 binds messenger RNAs at GGAGA motifs and regulates splicing factor abundance
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.08.004
– volume: 40
  start-page: D180
  year: 2012
  end-page: D186
  ident: CR24
  article-title: doRiNA: a database of RNA interactions in post-transcriptional regulation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr1007
– volume: 465
  start-page: 53
  year: 2010
  end-page: 59
  ident: CR5
  article-title: Deciphering the splicing code
  publication-title: Nature
  doi: 10.1038/nature09000
– volume: 1
  start-page: 1610
  year: 2006
  end-page: 1616
  ident: CR18
  article-title: Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution
  publication-title: Nature Protocols
  doi: 10.1038/nprot.2006.249
– volume: 460
  start-page: 479
  year: 2009
  end-page: 486
  ident: CR20
  article-title: Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps
  publication-title: Nature
  doi: 10.1038/nature08170
– ident: BFnature12946_CR10
  doi: 10.1186/1471-2164-13-S4-S6
– volume: 1
  start-page: 69
  year: 2012
  ident: BFnature12946_CR3
  publication-title: Cell. Rep.
  doi: 10.1016/j.celrep.2011.10.002
– volume: 467
  start-page: 103
  year: 2010
  ident: BFnature12946_CR2
  publication-title: Nature
  doi: 10.1038/nature09322
– volume: 9
  start-page: 357
  year: 2012
  ident: BFnature12946_CR17
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1923
– volume: 40
  start-page: D180
  year: 2012
  ident: BFnature12946_CR24
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr1007
– ident: BFnature12946_CR12
  doi: 10.1101/gr.138545.112
– volume: 136
  start-page: 215
  year: 2009
  ident: BFnature12946_CR6
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.002
– volume: 7
  start-page: 1009
  year: 2010
  ident: BFnature12946_CR14
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1528
– volume: 8
  start-page: e1002484
  year: 2012
  ident: BFnature12946_CR7
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002484
– volume: 120
  start-page: 15
  year: 2005
  ident: BFnature12946_CR19
  publication-title: Cell
  doi: 10.1016/j.cell.2004.12.035
– volume: 19
  start-page: 760
  year: 2012
  ident: BFnature12946_CR26
  publication-title: Nature Struct. Mol. Biol.
  doi: 10.1038/nsmb.2344
– volume: 48
  start-page: 195
  year: 2012
  ident: BFnature12946_CR25
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.08.004
– volume: 12
  start-page: 641
  year: 2011
  ident: BFnature12946_CR1
  publication-title: Nature Rev. Genet.
  doi: 10.1038/nrg3049
– ident: BFnature12946_CR23
  doi: 10.1038/nature02168
– volume: 1
  start-page: 1610
  year: 2006
  ident: BFnature12946_CR18
  publication-title: Nature Protocols
  doi: 10.1038/nprot.2006.249
– volume: 460
  start-page: 479
  year: 2009
  ident: BFnature12946_CR20
  publication-title: Nature
  doi: 10.1038/nature08170
– volume: 18
  start-page: 1760
  year: 2012
  ident: BFnature12946_CR8
  publication-title: RNA
  doi: 10.1261/rna.033282.112
– volume: 338
  start-page: 1587
  year: 2012
  ident: BFnature12946_CR15
  publication-title: Science
  doi: 10.1126/science.1230612
– volume: 9
  start-page: 18
  year: 2013
  ident: BFnature12946_CR16
  publication-title: Nature Chem. Biol.
  doi: 10.1038/nchembio.1131
– volume: 41
  start-page: 44
  year: 2013
  ident: BFnature12946_CR13
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1009
– volume: 10
  start-page: R25
  year: 2009
  ident: BFnature12946_CR22
  publication-title: Genome Biol
  doi: 10.1186/gb-2009-10-3-r25
– volume: 465
  start-page: 53
  year: 2010
  ident: BFnature12946_CR5
  publication-title: Nature
  doi: 10.1038/nature09000
– volume: 6
  start-page: e1001074
  year: 2010
  ident: BFnature12946_CR11
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1001074
– volume: 27
  start-page: 91
  year: 2007
  ident: BFnature12946_CR9
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.06.017
– volume: 34
  start-page: 2428
  year: 2006
  ident: BFnature12946_CR4
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl287
– volume: 17
  start-page: 909
  year: 2010
  ident: BFnature12946_CR21
  publication-title: Nature Struct. Mol. Biol.
  doi: 10.1038/nsmb.1838
– reference: 24476882 - Nature. 2014 Jan 30;505(7485):621-2
– reference: 20811459 - Nature. 2010 Sep 2;467(7311):103-7
– reference: 20601959 - Nat Struct Mol Biol. 2010 Jul;17(7):909-15
– reference: 20445623 - Nature. 2010 May 6;465(7294):53-9
– reference: 22832108 - Cell Rep. 2012 Jan 26;1(1):69-82
– reference: 21850044 - Nat Rev Genet. 2011 Sep;12(9):641-55
– reference: 22759654 - BMC Genomics. 2012;13 Suppl 4:S6
– reference: 14685227 - Nature. 2003 Dec 18;426(6968):789-96
– reference: 23258890 - Science. 2012 Dec 21;338(6114):1587-93
– reference: 23064747 - Genome Res. 2013 Feb;23(2):377-87
– reference: 23178934 - Nat Chem Biol. 2013 Jan;9(1):18-20
– reference: 22291592 - PLoS Pathog. 2012 Jan;8(1):e1002484
– reference: 22796965 - Nat Struct Mol Biol. 2012 Aug;19(8):760-6
– reference: 22086949 - Nucleic Acids Res. 2012 Jan;40(Database issue):D180-6
– reference: 22915600 - RNA. 2012 Oct;18(10):1760-70
– reference: 19536157 - Nature. 2009 Jul 23;460(7254):479-86
– reference: 21057496 - Nat Methods. 2010 Dec;7(12):1009-15
– reference: 22959275 - Mol Cell. 2012 Oct 26;48(2):195-206
– reference: 23125360 - Nucleic Acids Res. 2013 Jan 7;41(1):44-53
– reference: 20808897 - PLoS Genet. 2010 Aug;6(8):e1001074
– reference: 19261174 - Genome Biol. 2009;10(3):R25
– reference: 22388286 - Nat Methods. 2012 Apr;9(4):357-9
– reference: 16682450 - Nucleic Acids Res. 2006;34(8):2428-37
– reference: 17612493 - Mol Cell. 2007 Jul 6;27(1):91-105
– reference: 19167326 - Cell. 2009 Jan 23;136(2):215-33
– reference: 15652477 - Cell. 2005 Jan 14;120(1):15-20
– reference: 24535248 - Nat Rev Genet. 2014 Apr;15(4):219
SSID ssj0005174
Score 2.6046772
Snippet An RNA secondary structure (RSS) map of coding and noncoding RNA from a human family (two parents and their child) is produced; this reveals that approximately...
In parallel to the genetic code for protein synthesis, a second layer of information is embedded in all RNA transcripts in the form of RNA structure. RNA...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 706
SubjectTerms 3' Untranslated Regions - genetics
45
45/91
631/208/212/2019
631/337/1645
Base Sequence
Binding Sites
Child
Female
Gene Expression Regulation - genetics
Genetic code
Genetic research
Genetic variation
Genetics
Genome, Human - genetics
Humanities and Social Sciences
Humans
letter
Male
MicroRNAs - chemistry
MicroRNAs - genetics
MicroRNAs - metabolism
multidisciplinary
Nucleic Acid Conformation
Open Reading Frames - genetics
Physiological aspects
Point Mutation - genetics
Protein biosynthesis
Protein synthesis
Ribonucleic acid
RNA
RNA - chemistry
RNA - genetics
RNA - metabolism
RNA Splice Sites - genetics
RNA-Binding Proteins - metabolism
Science
Structure
Transcriptome - genetics
Title Landscape and variation of RNA secondary structure across the human transcriptome
URI https://link.springer.com/article/10.1038/nature12946
https://www.ncbi.nlm.nih.gov/pubmed/24476892
https://www.proquest.com/docview/1498087843
https://www.proquest.com/docview/1493796266
https://pubmed.ncbi.nlm.nih.gov/PMC3973747
Volume 505
WOSCitedRecordID wos000330321000046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAQT
  databaseName: Nature
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: RNT
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.nature.com
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M0K
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M7P
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: PCBAR
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M7S
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: PATMY
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 7X7
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: KB.
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database (ProQuest)
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 7RV
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest - Psychology Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2M
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest - Research Library
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2O
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: P5Z
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: BENPR
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 8C1
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2P
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYBhIvwMZX2agMGjCQwtI4jZ0n1FWbQFtL6AoUXiLHSUYlSLalm8R_z53jdknpygMvp1Y-X-3ad75L7n4mZNtXEvTIY5ZiKbdcJm1Lstiz2hD5RMpOUi50ofAR7_fFaOQH5oFbYdIqpzZRG-o4V_iMfBc8eWELLlz27vTMwluj8O2quUJjhawhSgLTqXvBVYrHHAqzqc-zmdgtYTPhsEPPt3IizdvlysE0nzQ59-ZUH0gHd_93KvfIHeOK0k65d9bJjSTbILd0SqgqNsi6UfuC7hhs6tf3yacjLA3GpCkKH-glRNp6aWme0kG_QwuMr2N5_puWwLQweyr1vCl4mlTfCEgneD5qa5X_Sh6Qzwf7w-57y9zKYCm_zSYQcCK-T-opLmOB0Zz0nMh3pY8lqimCz6QQ6kYs4rHrOi2ZJG6rJX0uPWGn3JfsIVnN8ix5TKjPoygFlw5kYWm7JyVvSalSJhzfUV7cIG-mKxMqA1mON2f8DPWrcybCyjI2yPaM-bRE6riGDZc4ROyLDJNrTuRFUYSd4dduP-wwD28sBK9vOZvHXXCrHMYa5Pkitg_Hg5qs65kqkl4ZpjSHOSppyiPgn0KErpq4f3BWZG7WONXp-CysyFnQWun7stZ6Uu60RcNZzliRuFVjBDumanIWNVd7T5UpNGa2CK80qUGezZqxJ6YOZkl-oXkY9yFuh6V_VKrwbH-Abwvhtg-_zWvKPWNA8PV6Szb-oUHYwY9nEIo3yIupGagM6-9t92T58DfJbfDEMR_MYvYWWQUVTZ6Sm-pyMi7Om2SFD74gHXFNBVDRbTXJ2t5-PxjAt8O9t0B79iFSp6fpR02DpraJmh4DDdrfoV_QGfa-_QErKbWQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VAoIL0PIyLbCglpdk1fG6u_YBoahQNWqIIATozazXdokEdhqnRf1T_EZm_EjtkIZTD9wi7bcTez07D3vmW4ANTyvcR4KbmsfSdLiyTMVDYW5j5hNoK4qlmzcKd2Wv5x4ceB-W4HfVC0NllZVNzA11mGp6R76FkbxrudJ1-JvRkUmnRtHX1eoIjUIt9qPTX5iyZa87b_H5btr27rvBzp5Znipgam-bTzBhIn6aWGipQpeyESXswHOURy2WMZGnxJiqBTyQoePYLRVFTqulPKmEa8XSUxzlXoLLaMdbVEIm-1_OSkpmWJ_LfkCLu1sFTSc6V4q0ax5w1g_UHOFskebMl9rcAe7e_N-W7hbcKENt1i72xgosRckqXM1LXnW2CiulWcvYi5J7--Vt-Nil1mcqCmP4g52ocaG6LI1Zv9dmGb0_CNX4lBXEu7jaTOXrzDCSZvmJh2xC_j-3xunP6A58vpCbvAvLSZpE94F5MghiDFlRFrXuC6VkSykdc9f2bC1CA15VmuDrkpKdTgb54eelAdz1a2pjwMYUPCqYSM6BkUr5xO2RUPHQoTrOMr89-LrT89tc0ImMGNUuhgnpYNhoc27A03mwzqd-Q9b5oJqk5yUoTvEetSrbP3CliIGsIe4fyJrMtQZSj4ZHfk3OnNHa3GeN0cNC0-ZdzmJgTeJ6A4h2WjfkzBuuz642r1-6kcw_27kGPJkO00wqjUyi9DjHcOkJDLQNuFeYjKl-YOwuhevhf8uGMZkCiFy-OZIMv-ck85incOlIAzYrs1O7rL_V7sHiy38M1_YG77t-t9PbX4PrmHVQ7ZvJrXVYxu0aPYQr-mQyzMaPcovK4NtF26E_Xf8CEQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6V8hAXoOVlWmBBLS_JiuN1vesDQlFKRNQoKqWI3sx6bZdIYKdxWtS_xq9jxo9ghzSceuAWaWcnu-vZedgz3wBseVrhPXK5qXksTIcry1Q8dM0djHwCbUWxkHmh8EAMh_LoyNtfgV9VLQylVVY6MVfUYarpHXkLPXlpSSEd3orLtIj93d678YlJHaToS2vVTqMQkb3o_CeGb9nb_i4-623b7r0_7H4wyw4DpvZ2-BSDJ8KqiV0tVCgpMlGuHXiO8qjcMiYglRjDtoAHInQcu62iyGm3lSeUK61YeIoj3ytwVeBmKZ1MdmvpJXMI0GVtoMVlq4DsRENLXnfNGs7bhJpRnE_YnPtqmxvD3u3_-RjvwK3SBWed4s6swUqUrMP1PBVWZ-uwVqq7jL0qMblf34WPAyqJpmQxhj_YmZoUIs3SmB0MOyyj9wqhmpyzApAXT56p_MwZetgs74TIpuQX5Fo6_RHdg8-Xssn7sJqkSfQQmCeCIEZXFnlRSb-rlGgrpWMubc_WbmjAm0oqfF1CtVPHkO9-njLApV8TIQO2ZsTjAqHkAjISL58wPxJ67MfqNMv8zuGX7tDvcJc6NaK3u5zMFQ66kzbnBjxfRNb_dNDgdTFRjdPLkihOcY9alWUheFKETNZg9w_KGs-NBqUej078Gp8Fo7W5Lxqjx4WkLVrOcsIax80GIepv3eCzaLg-u7rIfmleMv_PLTbg2WyYZlLKZBKlpzkNF56LDrgBDwr1MZMP9OmFKz38b9FQLDMCAp1vjiSjbzn4PMYvXDjCgO1KBdWW9bfYPVq-_KdwA9WPP-gP9zbgJgYjlBJncmsTVvG2Ro_hmj6bjrLJk1y5Mvh62WroN78ICmw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Landscape+and+variation+of+RNA+secondary+structure+across+the+human+transcriptome&rft.jtitle=Nature+%28London%29&rft.au=Wan%2C+Yue&rft.au=Qu%2C+Kun&rft.au=Zhang%2C+Qiangfeng+Cliff&rft.au=Flynn%2C+Ryan+A&rft.date=2014-01-30&rft.issn=1476-4687&rft.eissn=1476-4687&rft.volume=505&rft.issue=7485&rft.spage=706&rft_id=info:doi/10.1038%2Fnature12946&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon