Landscape and variation of RNA secondary structure across the human transcriptome
An RNA secondary structure (RSS) map of coding and noncoding RNA from a human family (two parents and their child) is produced; this reveals that approximately 15% of all transcribed single nucleotide variants (SNVs) alter local RNA structure, and these SNVs are depleted in certain locations, sugges...
Uloženo v:
| Vydáno v: | Nature (London) Ročník 505; číslo 7485; s. 706 - 709 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
30.01.2014
Nature Publishing Group |
| Témata: | |
| ISSN: | 0028-0836, 1476-4687, 1476-4687 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | An RNA secondary structure (RSS) map of coding and noncoding RNA from a human family (two parents and their child) is produced; this reveals that approximately 15% of all transcribed single nucleotide variants (SNVs) alter local RNA structure, and these SNVs are depleted in certain locations, suggesting that particular RNA structures are important at those sites.
Probing the
in vivo
RNA structurome
Being single-stranded, RNA can adopt a diversity of secondary structures via inter- and intramolecular base-pairing. Three studies published in this issue of
Nature
provide an in-depth view of the variety, dynamics and functional influence of RNA structures
in vivo
. Sarah Assmann and colleagues map the
in vivo
RNA structure of over 10,000 transcripts in the model plant
Arabidopsis thaliana
. Their struc-seq (structure-seqence) approach incorporates
in vivo
chemical (DMS) probing and next-generation sequencing to provide single-nucleotide resolution on a genome-wide scale. Distinct patterns of structure are found to be correlated with coding regions, splice sites and polyadenylation sites. Comparison of these results with those obtained by earlier technologies reveals that, although predictions for some classes of genes were fairly accurate, others, such as those involved in stress response, were poorly predicted and may reflect changes that made them more adapted to that condition. Jonathan Weissman and colleagues have also developed a DMS-seq method to globally monitor RNA structure to single-nucleotide precision in yeast and mammalian cells. Comparing their findings with
in vitro
data, the authors conclude that there is less structure within cells than expected. Even thermostable RNA structures can be denatured in cells, highlighting the importance of cellular processes in regulating RNA structure. Howard Chang and colleagues asked a different question: how does RNA secondary structure change on a transcriptome-wide level in related individuals? By calculating the RNA secondary structures of two parents and their child, they find that about 15% of transcribed single-nucleotide variants affect local secondary structure. These 'RiboSNitches' are depleted in certain locations, suggesting that a particular RNA structure at that site is important. This study illustrates that there is much to be learned about how changes in RNA structure, particularly as imparted by genetic variation, can alter gene expression.
In parallel to the genetic code for protein synthesis, a second layer of information is embedded in all RNA transcripts in the form of RNA structure. RNA structure influences practically every step in the gene expression program
1
. However, the nature of most RNA structures or effects of sequence variation on structure are not known. Here we report the initial landscape and variation of RNA secondary structures (RSSs) in a human family trio (mother, father and their child). This provides a comprehensive RSS map of human coding and non-coding RNAs. We identify unique RSS signatures that demarcate open reading frames and splicing junctions, and define authentic microRNA-binding sites. Comparison of native deproteinized RNA isolated from cells versus refolded purified RNA suggests that the majority of the RSS information is encoded within RNA sequence. Over 1,900 transcribed single nucleotide variants (approximately 15% of all transcribed single nucleotide variants) alter local RNA structure. We discover simple sequence and spacing rules that determine the ability of point mutations to impact RSSs. Selective depletion of ‘riboSNitches’ versus structurally synonymous variants at precise locations suggests selection for specific RNA shapes at thousands of sites, including 3′ untranslated regions, binding sites of microRNAs and RNA-binding proteins genome-wide. These results highlight the potentially broad contribution of RNA structure and its variation to gene regulation. |
|---|---|
| AbstractList | An RNA secondary structure (RSS) map of coding and noncoding RNA from a human family (two parents and their child) is produced; this reveals that approximately 15% of all transcribed single nucleotide variants (SNVs) alter local RNA structure, and these SNVs are depleted in certain locations, suggesting that particular RNA structures are important at those sites. Probing the in vivo RNA structurome Being single-stranded, RNA can adopt a diversity of secondary structures via inter- and intramolecular base-pairing. Three studies published in this issue of Nature provide an in-depth view of the variety, dynamics and functional influence of RNA structures in vivo. Sarah Assmann and colleagues map the in vivo RNA structure of over 10,000 transcripts in the model plant Arabidopsis thaliana. Their struc-seq (structure-seqence) approach incorporates in vivo chemical (DMS) probing and next-generation sequencing to provide single-nucleotide resolution on a genome-wide scale. Distinct patterns of structure are found to be correlated with coding regions, splice sites and polyadenylation sites. Comparison of these results with those obtained by earlier technologies reveals that, although predictions for some classes of genes were fairly accurate, others, such as those involved in stress response, were poorly predicted and may reflect changes that made them more adapted to that condition. Jonathan Weissman and colleagues have also developed a DMS-seq method to globally monitor RNA structure to single-nucleotide precision in yeast and mammalian cells. Comparing their findings with in vitro data, the authors conclude that there is less structure within cells than expected. Even thermostable RNA structures can be denatured in cells, highlighting the importance of cellular processes in regulating RNA structure. Howard Chang and colleagues asked a different question: how does RNA secondary structure change on a transcriptome-wide level in related individuals? By calculating the RNA secondary structures of two parents and their child, they find that about 15% of transcribed single-nucleotide variants affect local secondary structure. These 'RiboSNitches' are depleted in certain locations, suggesting that a particular RNA structure at that site is important. This study illustrates that there is much to be learned about how changes in RNA structure, particularly as imparted by genetic variation, can alter gene expression. In parallel to the genetic code for protein synthesis, a second layer of information is embedded in all RNA transcripts in the form of RNA structure. RNA structure influences practically every step in the gene expression program.sup.1. However, the nature of most RNA structures or effects of sequence variation on structure are not known. Here we report the initial landscape and variation of RNA secondary structures (RSSs) in a human family trio (mother, father and their child). This provides a comprehensive RSS map of human coding and non-coding RNAs. We identify unique RSS signatures that demarcate open reading frames and splicing junctions, and define authentic microRNA-binding sites. Comparison of native deproteinized RNA isolated from cells versus refolded purified RNA suggests that the majority of the RSS information is encoded within RNA sequence. Over 1,900 transcribed single nucleotide variants (approximately 15% of all transcribed single nucleotide variants) alter local RNA structure. We discover simple sequence and spacing rules that determine the ability of point mutations to impact RSSs. Selective depletion of 'riboSNitches' versus structurally synonymous variants at precise locations suggests selection for specific RNA shapes at thousands of sites, including 3' untranslated regions, binding sites of microRNAs and RNA-binding proteins genome-wide. These results highlight the potentially broad contribution of RNA structure and its variation to gene regulation. In parallel to the genetic code for protein synthesis, a second layer of information is embedded in all RNA transcripts in the form of RNA structure. RNA structure influences practically every step in the gene expression program1. Yet the nature of most RNA structures or effects of sequence variation on structure are not known. Here we report the initial landscape and variation of RNA secondary structures (RSS) in a human family Trio, providing a comprehensive RSS map of human coding and noncoding RNAs. We identify unique RSS signatures that demarcate open reading frames, splicing junctions, and define authentic microRNA binding sites. Comparison of native deproteinized RNA isolated from cells versus refolded purified RNA suggests that the majority of the RSS information is encoded within RNA sequence. Over 1900 transcribed single nucleotide variants (~15% of all transcribed SNVs) alter local RNA structure. We discover simple sequence and spacing rules that determine the ability of point mutations to impact RSS. Selective depletion of RiboSNitches versus structurally synonymous variants at precise locations suggests selection for specific RNA shapes at thousands of sites, including 3’UTRs, binding sites of miRNAs and RNA binding proteins genome-wide. These results highlight the potentially broad contribution of RNA structure and its variation to gene regulation. An RNA secondary structure (RSS) map of coding and noncoding RNA from a human family (two parents and their child) is produced; this reveals that approximately 15% of all transcribed single nucleotide variants (SNVs) alter local RNA structure, and these SNVs are depleted in certain locations, suggesting that particular RNA structures are important at those sites. Probing the in vivo RNA structurome Being single-stranded, RNA can adopt a diversity of secondary structures via inter- and intramolecular base-pairing. Three studies published in this issue of Nature provide an in-depth view of the variety, dynamics and functional influence of RNA structures in vivo . Sarah Assmann and colleagues map the in vivo RNA structure of over 10,000 transcripts in the model plant Arabidopsis thaliana . Their struc-seq (structure-seqence) approach incorporates in vivo chemical (DMS) probing and next-generation sequencing to provide single-nucleotide resolution on a genome-wide scale. Distinct patterns of structure are found to be correlated with coding regions, splice sites and polyadenylation sites. Comparison of these results with those obtained by earlier technologies reveals that, although predictions for some classes of genes were fairly accurate, others, such as those involved in stress response, were poorly predicted and may reflect changes that made them more adapted to that condition. Jonathan Weissman and colleagues have also developed a DMS-seq method to globally monitor RNA structure to single-nucleotide precision in yeast and mammalian cells. Comparing their findings with in vitro data, the authors conclude that there is less structure within cells than expected. Even thermostable RNA structures can be denatured in cells, highlighting the importance of cellular processes in regulating RNA structure. Howard Chang and colleagues asked a different question: how does RNA secondary structure change on a transcriptome-wide level in related individuals? By calculating the RNA secondary structures of two parents and their child, they find that about 15% of transcribed single-nucleotide variants affect local secondary structure. These 'RiboSNitches' are depleted in certain locations, suggesting that a particular RNA structure at that site is important. This study illustrates that there is much to be learned about how changes in RNA structure, particularly as imparted by genetic variation, can alter gene expression. In parallel to the genetic code for protein synthesis, a second layer of information is embedded in all RNA transcripts in the form of RNA structure. RNA structure influences practically every step in the gene expression program 1 . However, the nature of most RNA structures or effects of sequence variation on structure are not known. Here we report the initial landscape and variation of RNA secondary structures (RSSs) in a human family trio (mother, father and their child). This provides a comprehensive RSS map of human coding and non-coding RNAs. We identify unique RSS signatures that demarcate open reading frames and splicing junctions, and define authentic microRNA-binding sites. Comparison of native deproteinized RNA isolated from cells versus refolded purified RNA suggests that the majority of the RSS information is encoded within RNA sequence. Over 1,900 transcribed single nucleotide variants (approximately 15% of all transcribed single nucleotide variants) alter local RNA structure. We discover simple sequence and spacing rules that determine the ability of point mutations to impact RSSs. Selective depletion of ‘riboSNitches’ versus structurally synonymous variants at precise locations suggests selection for specific RNA shapes at thousands of sites, including 3′ untranslated regions, binding sites of microRNAs and RNA-binding proteins genome-wide. These results highlight the potentially broad contribution of RNA structure and its variation to gene regulation. In parallel to the genetic code for protein synthesis, a second layer of information is embedded in all RNA transcripts in the form of RNA structure. RNA structure influences practically every step in the gene expression program. However, the nature of most RNA structures or effects of sequence variation on structure are not known. Here we report the initial landscape and variation of RNA secondary structures (RSSs) in a human family trio (mother, father and their child). This provides a comprehensive RSS map of human coding and non-coding RNAs. We identify unique RSS signatures that demarcate open reading frames and splicing junctions, and define authentic microRNA-binding sites. Comparison of native deproteinized RNA isolated from cells versus refolded purified RNA suggests that the majority of the RSS information is encoded within RNA sequence. Over 1,900 transcribed single nucleotide variants (approximately 15% of all transcribed single nucleotide variants) alter local RNA structure. We discover simple sequence and spacing rules that determine the ability of point mutations to impact RSSs. Selective depletion of 'riboSNitches' versus structurally synonymous variants at precise locations suggests selection for specific RNA shapes at thousands of sites, including 3' untranslated regions, binding sites of microRNAs and RNA-binding proteins genome-wide. These results highlight the potentially broad contribution of RNA structure and its variation to gene regulation. In parallel to the genetic code for protein synthesis, a second layer of information is embedded in all RNA transcripts in the form of RNA structure. RNA structure influences practically every step in the gene expression program. However, the nature of most RNA structures or effects of sequence variation on structure are not known. Here we report the initial landscape and variation of RNA secondary structures (RSSs) in a human family trio (mother, father and their child). This provides a comprehensive RSS map of human coding and non-coding RNAs. We identify unique RSS signatures that demarcate open reading frames and splicing junctions, and define authentic microRNA-binding sites. Comparison of native deproteinized RNA isolated from cells versus refolded purified RNA suggests that the majority of the RSS information is encoded within RNA sequence. Over 1,900 transcribed single nucleotide variants (approximately 15% of all transcribed single nucleotide variants) alter local RNA structure. We discover simple sequence and spacing rules that determine the ability of point mutations to impact RSSs. Selective depletion of 'riboSNitches' versus structurally synonymous variants at precise locations suggests selection for specific RNA shapes at thousands of sites, including 3' untranslated regions, binding sites of microRNAs and RNA-binding proteins genome-wide. These results highlight the potentially broad contribution of RNA structure and its variation to gene regulation.In parallel to the genetic code for protein synthesis, a second layer of information is embedded in all RNA transcripts in the form of RNA structure. RNA structure influences practically every step in the gene expression program. However, the nature of most RNA structures or effects of sequence variation on structure are not known. Here we report the initial landscape and variation of RNA secondary structures (RSSs) in a human family trio (mother, father and their child). This provides a comprehensive RSS map of human coding and non-coding RNAs. We identify unique RSS signatures that demarcate open reading frames and splicing junctions, and define authentic microRNA-binding sites. Comparison of native deproteinized RNA isolated from cells versus refolded purified RNA suggests that the majority of the RSS information is encoded within RNA sequence. Over 1,900 transcribed single nucleotide variants (approximately 15% of all transcribed single nucleotide variants) alter local RNA structure. We discover simple sequence and spacing rules that determine the ability of point mutations to impact RSSs. Selective depletion of 'riboSNitches' versus structurally synonymous variants at precise locations suggests selection for specific RNA shapes at thousands of sites, including 3' untranslated regions, binding sites of microRNAs and RNA-binding proteins genome-wide. These results highlight the potentially broad contribution of RNA structure and its variation to gene regulation. An RNA secondary structure (RSS) map of coding and noncoding RNA from a human family (two parents and their child) is produced; this reveals that approximately 15% of all transcribed single nucleotide variants (SNVs) alter local RNA structure, and these SNVs are depleted in certain locations, suggesting that particular RNA structures are important at those sites. In parallel to the genetic code for protein synthesis, a second layer of information is embedded in all RNA transcripts in the form of RNA structure. RNA structure influences practically every step in the gene expression program. However, the nature of most RNA structures or effects of sequence variation on structure are not known. Here we report the initial landscape and variation of RNA secondary structures (RSSs) in a human family trio (mother, father and their child). This provides a comprehensive RSS map of human coding and non-coding RNAs. We identify unique RSS signatures that demarcate open reading frames and splicing junctions, and define authentic microRNA-binding sites. Comparison of native deproteinized RNA isolated from cells versus refolded purified RNA suggests that the majority of the RSS information is encoded within RNA sequence. Over 1,900 transcribed single nucleotide variants (approximately 15% of all transcribed single nucleotide variants) alter local RNA structure. We discover simple sequence and spacing rules that determine the ability of point mutations to impact RSSs. Selective depletion of 'riboSNitches' versus structurally synonymous variants at precise locations suggests selection for specific RNA shapes at thousands of sites, including 3' untranslated regions, binding sites of microRNAs and RNA-binding proteins genome-wide. These results highlight the potentially broad contribution of RNA structure and its variation to gene regulation. [PUBLICATION ABSTRACT] |
| Audience | Academic |
| Author | Wan, Yue Flynn, Ryan A. Zhang, Jiajing Spitale, Robert C. Manor, Ohad Qu, Kun Chang, Howard Y. Segal, Eran Snyder, Michael P. Zhang, Qiangfeng Cliff Ouyang, Zhengqing |
| AuthorAffiliation | 1 Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA 5 Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305 2 Genome Institute of Singapore, Singapore 138672 3 Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovet 76100, Israel |
| AuthorAffiliation_xml | – name: 3 Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovet 76100, Israel – name: 5 Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305 – name: 1 Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA – name: 2 Genome Institute of Singapore, Singapore 138672 |
| Author_xml | – sequence: 1 givenname: Yue surname: Wan fullname: Wan, Yue email: wany@gis.a-star.edu.sg organization: Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stem Cell and Development, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672 – sequence: 2 givenname: Kun surname: Qu fullname: Qu, Kun organization: Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine – sequence: 3 givenname: Qiangfeng Cliff surname: Zhang fullname: Zhang, Qiangfeng Cliff organization: Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine – sequence: 4 givenname: Ryan A. surname: Flynn fullname: Flynn, Ryan A. organization: Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine – sequence: 5 givenname: Ohad surname: Manor fullname: Manor, Ohad organization: Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovet 76100, Israel – sequence: 6 givenname: Zhengqing surname: Ouyang fullname: Ouyang, Zhengqing organization: Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Present address: The Jackson Laboratory for Genomic Medicine, 263 Farmington Avenue, ASB Call Box 901 Farmington, Connecticut 06030, USA – sequence: 7 givenname: Jiajing surname: Zhang fullname: Zhang, Jiajing organization: Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine – sequence: 8 givenname: Robert C. surname: Spitale fullname: Spitale, Robert C. organization: Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine – sequence: 9 givenname: Michael P. surname: Snyder fullname: Snyder, Michael P. organization: Department of Genetics, Stanford University School of Medicine – sequence: 10 givenname: Eran surname: Segal fullname: Segal, Eran organization: Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovet 76100, Israel – sequence: 11 givenname: Howard Y. surname: Chang fullname: Chang, Howard Y. email: howchang@stanford.edu organization: Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24476892$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk81v0zAUwCM0xLrBiTuK2AUEGf6q7VyQqmrApGqIMcTRch2n9ZTYne1M8N_PXfeRooxNOSRyfu_3nu339rId66zOstcQHEKA-ScrY-c1RCWhz7IRJIwWhHK2k40AQLwAHNPdbC-EcwDAGDLyIttFJFG8RKPsx0zaKii50nn6yC-lNzIaZ3NX56cnkzxo5Wwl_d88RN-pdaZcKu9CyONS58uulTaPXtqgvFlF1-qX2fNaNkG_unnvZ7--HJ1NvxWz71-Pp5NZocoxjgUBDCNeU8VkxQEERFI0L4ksMcGo5nBMa4DYHM9ZRQiCUmsCoSyZpBzUrJR4P_u88a66easrpW0qoxErb9pUrnDSiO0_1izFwl0KXDLMCEuCdzcC7y46HaJoTVC6aaTVrgsCkhKzkiJKE3rwD3ruOm_T9tYUB5xxgu-phWy0MLZ2Ka9aS8WEMoIQRvj_FKYQjyGFKFHFALXQVqetpPuvTVresj6F7_vfDvBqZS5EX_og1DcdDkDpqXRr1GCpTwroZ3i_FZCYqP_EhexCEMc_T7flj7F974eH2cnZ7-nJtvlxuu9-0-_Ou7a8nbwEwA1wPUxe10KZeD166TRMIyAQ6-kWvem-L-Eu5lY7TH_c0CFRdqF9r2kH8Cs3_FX5 |
| CODEN | NATUAS |
| CitedBy_id | crossref_primary_10_1093_nar_gkaa404 crossref_primary_10_1093_plcell_koad026 crossref_primary_10_1534_genetics_119_302058 crossref_primary_10_3390_ncrna5010015 crossref_primary_10_1016_j_cell_2015_01_005 crossref_primary_10_1016_j_bbagrm_2015_09_011 crossref_primary_10_1016_j_copbio_2016_03_019 crossref_primary_10_1021_acs_chemrev_7b00504 crossref_primary_10_1186_s12859_024_05704_x crossref_primary_10_1093_hmg_ddad057 crossref_primary_10_1016_j_cell_2025_06_007 crossref_primary_10_1002_wrna_1601 crossref_primary_10_1186_s12864_018_4497_0 crossref_primary_10_1073_pnas_1807988115 crossref_primary_10_1038_s41422_019_0230_z crossref_primary_10_1007_s00439_022_02500_6 crossref_primary_10_1016_j_gpb_2017_05_002 crossref_primary_10_1093_nar_gkaf780 crossref_primary_10_1038_s41587_020_0712_z crossref_primary_10_1002_ijch_202300073 crossref_primary_10_1093_nar_gkae334 crossref_primary_10_1016_j_ygeno_2018_11_019 crossref_primary_10_1371_journal_pcbi_1012715 crossref_primary_10_1016_j_jbc_2021_101248 crossref_primary_10_1101_gr_209015_116 crossref_primary_10_1007_s11427_021_2116_2 crossref_primary_10_1038_nrm_2016_132 crossref_primary_10_1111_cpr_13578 crossref_primary_10_1146_annurev_genom_120219_073756 crossref_primary_10_1016_j_bbagrm_2015_10_010 crossref_primary_10_1017_S0033583516000020 crossref_primary_10_1093_nar_gkaa1208 crossref_primary_10_1101_gad_310896_117 crossref_primary_10_1016_j_neuron_2015_09_045 crossref_primary_10_3389_fmolb_2018_00111 crossref_primary_10_1186_s43046_025_00266_2 crossref_primary_10_3390_ijms241915002 crossref_primary_10_1186_s12915_022_01448_3 crossref_primary_10_1093_nar_gky012 crossref_primary_10_1038_nature14234 crossref_primary_10_1002_wrna_1291 crossref_primary_10_1038_nrm_2016_139 crossref_primary_10_1093_nar_gkae220 crossref_primary_10_3390_biology14040442 crossref_primary_10_1186_s13059_021_02379_y crossref_primary_10_15252_msb_20167375 crossref_primary_10_1093_gigascience_giab023 crossref_primary_10_1096_fj_202500461R crossref_primary_10_1021_jacs_8b10558 crossref_primary_10_1038_s41467_022_31875_3 crossref_primary_10_1007_s10295_018_2004_x crossref_primary_10_1016_j_fmre_2021_12_007 crossref_primary_10_1002_wrna_1626 crossref_primary_10_1038_s41422_018_0040_8 crossref_primary_10_1186_s13059_019_1880_3 crossref_primary_10_1093_nar_gkw048 crossref_primary_10_1101_gr_214973_116 crossref_primary_10_3389_fimmu_2022_1031200 crossref_primary_10_1016_j_ccell_2016_03_010 crossref_primary_10_1261_rna_047068_114 crossref_primary_10_1242_dev_200398 crossref_primary_10_1038_nmeth_3029 crossref_primary_10_1093_nargab_lqaf066 crossref_primary_10_1002_cbic_202000445 crossref_primary_10_1016_j_cell_2016_03_030 crossref_primary_10_1038_mtna_2014_45 crossref_primary_10_1146_annurev_arplant_043015_111754 crossref_primary_10_1038_523398a crossref_primary_10_1038_s41594_020_0461_1 crossref_primary_10_1016_j_bbrc_2014_08_139 crossref_primary_10_1038_ni_2887 crossref_primary_10_1093_nargab_lqab007 crossref_primary_10_3389_fphar_2022_984453 crossref_primary_10_1016_j_tig_2018_08_001 crossref_primary_10_1186_s13578_020_00479_z crossref_primary_10_1038_s41598_020_68459_4 crossref_primary_10_1261_rna_067868_118 crossref_primary_10_1186_s13059_019_1641_3 crossref_primary_10_1002_wrna_1518 crossref_primary_10_1016_j_vaccine_2023_07_024 crossref_primary_10_1089_cmb_2024_0519 crossref_primary_10_1016_j_cej_2022_136864 crossref_primary_10_1038_nrg3700 crossref_primary_10_1371_journal_pone_0128769 crossref_primary_10_1016_j_jmb_2015_05_018 crossref_primary_10_1111_nyas_14051 crossref_primary_10_3389_fimmu_2018_03138 crossref_primary_10_1093_nar_gkx141 crossref_primary_10_1093_brain_awac326 crossref_primary_10_1093_nar_gkaa880 crossref_primary_10_1038_s42256_021_00412_0 crossref_primary_10_1007_s00294_015_0551_5 crossref_primary_10_1093_bib_bbv026 crossref_primary_10_1016_j_leukres_2024_107499 crossref_primary_10_1093_nsr_nwu008 crossref_primary_10_1016_j_neuron_2016_02_004 crossref_primary_10_1186_s13059_025_03590_x crossref_primary_10_3390_ijms16011395 crossref_primary_10_1186_s13059_021_02549_y crossref_primary_10_1007_s00439_021_02395_9 crossref_primary_10_1016_j_jmb_2016_02_005 crossref_primary_10_1146_annurev_arplant_083123_055521 crossref_primary_10_1261_rna_072850_119 crossref_primary_10_1038_nrg3813 crossref_primary_10_1186_s12860_020_00297_8 crossref_primary_10_1016_j_ymeth_2018_11_019 crossref_primary_10_1128_JVI_02190_20 crossref_primary_10_1016_j_jmb_2016_04_017 crossref_primary_10_15252_msb_156240 crossref_primary_10_1038_nmeth_4057 crossref_primary_10_1016_j_tibs_2015_02_005 crossref_primary_10_1038_s41580_025_00857_w crossref_primary_10_3389_fcell_2020_00242 crossref_primary_10_1093_molbev_msw012 crossref_primary_10_1016_j_molcel_2018_10_047 crossref_primary_10_1038_s41467_021_22549_7 crossref_primary_10_1007_s12031_016_0745_4 crossref_primary_10_1007_s00438_018_1420_y crossref_primary_10_1038_s41589_019_0459_3 crossref_primary_10_1093_nar_gkaa577 crossref_primary_10_1093_nar_gkac756 crossref_primary_10_1016_j_fmre_2023_06_001 crossref_primary_10_1007_s11427_019_1658_x crossref_primary_10_1007_s11904_014_0240_x crossref_primary_10_1093_nar_gkx646 crossref_primary_10_1093_nar_gky613 crossref_primary_10_1186_s13059_018_1399_z crossref_primary_10_1371_journal_pone_0271616 crossref_primary_10_1038_nature14280 crossref_primary_10_1089_cmb_2023_0283 crossref_primary_10_1002_wrna_1253 crossref_primary_10_1002_wrna_1374 crossref_primary_10_1093_nar_gkw671 crossref_primary_10_1093_molbev_msw028 crossref_primary_10_1021_ja513080v crossref_primary_10_1038_s41594_020_0398_4 crossref_primary_10_1039_C8CC01134F crossref_primary_10_1093_molbev_msu402 crossref_primary_10_1134_S0026893316060170 crossref_primary_10_1016_j_tibs_2015_12_009 crossref_primary_10_1038_s41467_021_25078_5 crossref_primary_10_1186_s13059_014_0491_2 crossref_primary_10_3390_genes9060300 crossref_primary_10_1088_1742_6596_1650_3_032164 crossref_primary_10_1093_nar_gkx1107 crossref_primary_10_1016_j_humgen_2023_201226 crossref_primary_10_1371_journal_pone_0179040 crossref_primary_10_3389_fcimb_2014_00132 crossref_primary_10_1016_j_bbrc_2017_02_100 crossref_primary_10_1016_j_ccell_2016_10_004 crossref_primary_10_1038_nrm_2016_163 crossref_primary_10_1016_j_mib_2017_01_003 crossref_primary_10_1042_BST20170422 crossref_primary_10_1038_s41586_020_2253_5 crossref_primary_10_3389_fpls_2018_00671 crossref_primary_10_1186_s13059_020_02022_2 crossref_primary_10_1093_nar_gky389 crossref_primary_10_1093_nar_gku342 crossref_primary_10_1261_rna_064469_117 crossref_primary_10_1016_j_chembiol_2020_01_003 crossref_primary_10_1038_nature14263 crossref_primary_10_1111_febs_17368 crossref_primary_10_1016_j_molcel_2016_04_028 crossref_primary_10_1016_j_ceb_2015_04_007 crossref_primary_10_3390_ijms17050702 crossref_primary_10_1002_1873_3468_14673 crossref_primary_10_1016_j_biomaterials_2017_02_033 crossref_primary_10_3389_fcell_2014_00039 crossref_primary_10_1101_gad_262766_115 crossref_primary_10_1038_s41580_024_00748_6 crossref_primary_10_1101_gr_166322_113 crossref_primary_10_1042_BST20160075 crossref_primary_10_1093_molbev_msaf126 crossref_primary_10_1007_s13258_021_01194_w crossref_primary_10_1186_s12929_017_0358_4 crossref_primary_10_1002_wrna_1712 crossref_primary_10_1016_j_arr_2014_12_008 crossref_primary_10_1016_j_chembiol_2023_12_010 crossref_primary_10_3390_ijms21186770 crossref_primary_10_1021_jacs_4c03753 crossref_primary_10_1038_nprot_2015_064 crossref_primary_10_1016_j_jmb_2021_167159 crossref_primary_10_1016_j_molcel_2016_04_030 crossref_primary_10_1002_bies_201300146 crossref_primary_10_1073_pnas_1424217112 crossref_primary_10_1186_s13059_022_02656_4 crossref_primary_10_7554_eLife_69803 crossref_primary_10_1007_s40484_020_0205_6 crossref_primary_10_7554_eLife_39054 crossref_primary_10_1038_s41598_017_15822_7 crossref_primary_10_1002_jez_b_22930 crossref_primary_10_1016_j_pbi_2015_05_021 crossref_primary_10_15252_embr_201540955 crossref_primary_10_3390_ijms20225610 crossref_primary_10_1093_bib_bbz036 crossref_primary_10_1093_nar_gkw1094 crossref_primary_10_1261_rna_060467_116 crossref_primary_10_1038_nbt_3289 crossref_primary_10_1093_nar_gku909 crossref_primary_10_1016_j_tibs_2016_08_009 crossref_primary_10_1016_j_bbagrm_2019_194439 crossref_primary_10_1093_bib_bbu018 crossref_primary_10_1093_bib_bbv106 crossref_primary_10_1016_j_ygeno_2016_01_005 crossref_primary_10_1261_rna_063073_117 crossref_primary_10_1261_rna_062802_117 crossref_primary_10_7554_eLife_22037 crossref_primary_10_1002_bies_201300174 crossref_primary_10_1007_s11427_024_2609_8 crossref_primary_10_1186_s13148_019_0648_7 crossref_primary_10_1016_j_tig_2015_01_001 crossref_primary_10_1016_j_canlet_2022_215677 crossref_primary_10_1093_nar_gkv010 crossref_primary_10_1038_s41586_023_06500_y crossref_primary_10_1038_nsmb_2921 crossref_primary_10_1016_j_molcel_2024_06_036 crossref_primary_10_1038_s41467_019_13527_1 crossref_primary_10_3389_fcell_2021_766532 crossref_primary_10_1093_nar_gkv1308 crossref_primary_10_1016_j_csbj_2021_05_030 crossref_primary_10_1038_s41467_019_10923_5 crossref_primary_10_1016_j_cell_2014_10_040 crossref_primary_10_1007_s11033_025_10906_4 crossref_primary_10_1093_bib_bbab082 crossref_primary_10_3389_fonc_2022_896840 crossref_primary_10_1007_s00439_017_1783_x crossref_primary_10_1038_s41594_018_0091_z crossref_primary_10_1093_nar_gkv706 crossref_primary_10_1016_j_bbagrm_2015_07_014 crossref_primary_10_1186_s12859_019_2645_4 crossref_primary_10_3389_fgene_2017_00032 crossref_primary_10_1101_gr_191122_115 crossref_primary_10_1002_anie_201505938 crossref_primary_10_1007_s00335_021_09924_x crossref_primary_10_1038_srep16037 crossref_primary_10_1073_pnas_1523004113 crossref_primary_10_1007_s40484_017_0093_6 crossref_primary_10_1111_bjd_17640 crossref_primary_10_1093_nargab_lqab073 crossref_primary_10_1016_j_sbi_2024_102915 crossref_primary_10_1097_j_pain_0000000000000258 crossref_primary_10_1016_j_it_2017_06_001 crossref_primary_10_3389_fmicb_2024_1362067 crossref_primary_10_1093_humupd_dmw035 crossref_primary_10_3389_fpls_2022_868771 crossref_primary_10_3390_ijms22063262 crossref_primary_10_1038_s41467_017_01458_8 crossref_primary_10_1002_iub_2673 crossref_primary_10_1038_nrendo_2014_229 crossref_primary_10_1016_j_tig_2018_06_002 crossref_primary_10_1038_s41422_021_00476_y crossref_primary_10_1038_srep28977 crossref_primary_10_1182_blood_2016_02_699686 crossref_primary_10_1038_nrg3681 crossref_primary_10_1038_nrm4032 crossref_primary_10_1038_s41588_020_0644_z crossref_primary_10_3389_fgene_2019_00309 crossref_primary_10_1016_j_cell_2018_02_034 crossref_primary_10_1038_s41594_018_0100_2 crossref_primary_10_1007_s40484_018_0146_5 crossref_primary_10_1016_j_csbj_2023_01_007 crossref_primary_10_1186_s12859_021_04102_x crossref_primary_10_1002_advs_202004168 crossref_primary_10_1016_j_jbior_2023_100975 crossref_primary_10_3390_nu14193990 crossref_primary_10_1186_s12929_016_0270_3 crossref_primary_10_3389_fcimb_2021_673966 crossref_primary_10_1016_j_ymeth_2014_10_003 crossref_primary_10_3390_biom13101497 crossref_primary_10_1038_s41467_024_48244_x crossref_primary_10_3390_molecules24081613 crossref_primary_10_1038_s41592_022_01623_y crossref_primary_10_1016_j_bbagrm_2019_04_008 crossref_primary_10_1016_j_sbi_2016_01_007 crossref_primary_10_1016_j_molcel_2014_08_025 crossref_primary_10_3390_biom15050627 crossref_primary_10_1038_s12276_018_0087_0 crossref_primary_10_1038_s41467_018_06046_y crossref_primary_10_3390_ijms21228878 crossref_primary_10_1126_science_1260793 crossref_primary_10_1002_wrna_1474 crossref_primary_10_1186_s13059_020_02236_4 crossref_primary_10_1002_wrna_1477 crossref_primary_10_1038_s41573_023_00827_x crossref_primary_10_15252_embj_201489589 crossref_primary_10_1038_s41588_021_00864_5 crossref_primary_10_1093_bioadv_vbaf012 crossref_primary_10_1261_rna_073601_119 crossref_primary_10_1016_j_jbc_2024_107317 crossref_primary_10_1098_rsob_200091 crossref_primary_10_1371_journal_pone_0243155 crossref_primary_10_1016_j_neuroscience_2016_02_042 crossref_primary_10_3389_fgene_2021_649619 crossref_primary_10_1093_nar_gkx115 crossref_primary_10_1016_j_cell_2015_02_012 crossref_primary_10_1038_s41576_018_0034_x crossref_primary_10_1101_gr_195164_115 crossref_primary_10_1126_science_aaa1807 crossref_primary_10_1371_journal_pcbi_1007852 crossref_primary_10_1038_nrg3778 crossref_primary_10_1101_gr_208652_116 crossref_primary_10_1210_er_2014_1034 crossref_primary_10_1371_journal_pgen_1005613 crossref_primary_10_3389_fgene_2018_00380 crossref_primary_10_1073_pnas_2112677119 crossref_primary_10_1146_annurev_genet_120215_035034 crossref_primary_10_1007_s00439_024_02667_0 crossref_primary_10_1016_j_csbj_2023_10_036 crossref_primary_10_1016_j_ymeth_2017_06_001 crossref_primary_10_1093_jxb_erab030 crossref_primary_10_1093_nargab_lqaa057 crossref_primary_10_1038_s41594_021_00678_3 crossref_primary_10_1038_s41594_019_0200_7 crossref_primary_10_1261_rna_049221_114 crossref_primary_10_1186_s13046_018_0793_4 crossref_primary_10_1038_s41467_024_48615_4 crossref_primary_10_1073_pnas_2012217117 crossref_primary_10_1371_journal_pone_0139900 crossref_primary_10_1016_j_gene_2022_146694 crossref_primary_10_1186_s12859_020_03914_7 crossref_primary_10_3389_fcell_2020_586479 crossref_primary_10_1016_j_tibs_2018_09_012 crossref_primary_10_1038_s41467_023_41550_w crossref_primary_10_1038_s41573_022_00521_4 crossref_primary_10_1002_wrna_1426 crossref_primary_10_1371_journal_pone_0183229 crossref_primary_10_3390_insects11090581 crossref_primary_10_1016_j_tibs_2020_03_005 crossref_primary_10_1093_nar_gkv950 crossref_primary_10_1093_nar_gky666 crossref_primary_10_1073_pnas_1908052116 crossref_primary_10_1038_505621a crossref_primary_10_1016_j_molonc_2015_03_001 crossref_primary_10_1016_j_jaut_2019_102334 crossref_primary_10_1093_nar_gkw362 crossref_primary_10_1093_nar_gkab124 crossref_primary_10_1186_s12859_016_1071_0 crossref_primary_10_1093_nar_gkac212 crossref_primary_10_1261_rna_057364_116 crossref_primary_10_1038_s41586_023_06127_z crossref_primary_10_1186_s12929_023_00977_5 crossref_primary_10_1186_s12929_020_00640_3 crossref_primary_10_1002_humu_23283 crossref_primary_10_1038_s41598_019_44489_5 crossref_primary_10_1016_j_crmeth_2025_101087 crossref_primary_10_1017_S003358351600007X crossref_primary_10_1042_BST20140084 crossref_primary_10_1186_s12859_016_1067_9 crossref_primary_10_3390_genes12020239 crossref_primary_10_1111_pcmr_12537 crossref_primary_10_1016_j_ymeth_2015_02_003 crossref_primary_10_1038_s41467_022_28817_4 crossref_primary_10_1261_rna_043844_113 crossref_primary_10_1038_gene_2014_75 crossref_primary_10_1093_nar_gkv166 crossref_primary_10_1016_j_tibtech_2016_11_002 crossref_primary_10_1186_s13015_016_0070_z crossref_primary_10_1002_ange_201505938 crossref_primary_10_1016_j_cbpa_2021_03_006 crossref_primary_10_1042_BSR20220149 crossref_primary_10_1371_journal_pcbi_1004473 crossref_primary_10_3389_fneur_2017_00025 crossref_primary_10_1186_s12859_018_2078_5 crossref_primary_10_3389_fphar_2018_01437 crossref_primary_10_1093_bib_bby102 crossref_primary_10_1016_j_molp_2018_01_008 crossref_primary_10_1093_nar_gkab250 |
| Cites_doi | 10.1038/nature09322 10.1038/nchembio.1131 10.1038/nrg3049 10.1016/j.cell.2004.12.035 10.1371/journal.pgen.1001074 10.1038/nsmb.1838 10.1126/science.1230612 10.1016/j.molcel.2007.06.017 10.1038/nmeth.1528 10.1038/nsmb.2344 10.1093/nar/gks1009 10.1016/j.celrep.2011.10.002 10.1261/rna.033282.112 10.1093/nar/gkl287 10.1371/journal.ppat.1002484 10.1186/gb-2009-10-3-r25 10.1038/nmeth.1923 10.1016/j.cell.2009.01.002 10.1016/j.molcel.2012.08.004 10.1093/nar/gkr1007 10.1038/nature09000 10.1038/nprot.2006.249 10.1038/nature08170 10.1186/1471-2164-13-S4-S6 10.1101/gr.138545.112 10.1038/nature02168 |
| ContentType | Journal Article |
| Copyright | Springer Nature Limited 2014 COPYRIGHT 2014 Nature Publishing Group Copyright Nature Publishing Group Jan 30, 2014 |
| Copyright_xml | – notice: Springer Nature Limited 2014 – notice: COPYRIGHT 2014 Nature Publishing Group – notice: Copyright Nature Publishing Group Jan 30, 2014 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 5PM |
| DOI | 10.1038/nature12946 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database (ProQuest) Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection eLibrary ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database ProQuest - Psychology Database ProQuest - Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection Proquest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PATMY name: Environmental Science Database url: http://search.proquest.com/environmentalscience sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Physics |
| EISSN | 1476-4687 |
| EndPage | 709 |
| ExternalDocumentID | PMC3973747 3218454591 A674223233 A361351612 24476892 10_1038_nature12946 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: NHGRI NIH HHS grantid: R01 HG004361 – fundername: NHGRI NIH HHS grantid: R01-HG004361 – fundername: NCI NIH HHS grantid: P30 CA034196 – fundername: Howard Hughes Medical Institute – fundername: NCI NIH HHS grantid: T32 CA009302 |
| GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 00M 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 3V. 4.4 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z A8Z AAEEF AAHBH AAHTB AAIKC AAKAB AAKAS AAMNW AASDW AAYEP AAYZH AAZLF ABAWZ ABDBF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACUHS ACWUS ADBBV ADFRT ADUKH ADYSU ADZCM AENEX AEUYN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH APEBS ARAPS ARMCB ARTTT ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC B0M BBNVY BCU BDKGC BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BLC BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DO4 DU5 DWQXO E.- E.L EAD EAP EAS EAZ EBC EBD EBO EBS ECC EE. EJD EMB EMF EMH EMK EMOBN EPL EPS ESE ESN ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PKN PM3 PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TH9 TN5 TSG TUS TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ZKB ~02 ~7V ~88 ~8M ~KM AARCD AAYXX ABFSG ABUFD ACSTC ADXHL AETEA AFANA AFFHD ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB ADGHP CGR CUY CVF ECM EIF NPM ACMFV AEIIB PMFND ESTFP 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c953t-407328f6c7ad80104a62b94a93432f8156f027b3b7d4421aee411a97a680f79a3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 425 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000330321000046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0028-0836 1476-4687 |
| IngestDate | Tue Nov 04 01:55:32 EST 2025 Thu Oct 02 18:14:47 EDT 2025 Tue Oct 07 07:01:14 EDT 2025 Sat Nov 29 13:11:39 EST 2025 Sat Nov 29 13:10:39 EST 2025 Sat Nov 29 11:29:21 EST 2025 Sat Nov 29 11:44:45 EST 2025 Tue Jun 10 15:34:49 EDT 2025 Tue Jun 10 15:34:39 EDT 2025 Sat Nov 29 09:59:01 EST 2025 Sun Nov 23 08:47:20 EST 2025 Wed Nov 26 09:25:17 EST 2025 Wed Nov 26 09:32:41 EST 2025 Wed Nov 26 10:26:46 EST 2025 Mon Nov 24 14:50:32 EST 2025 Mon Jul 21 06:05:31 EDT 2025 Tue Nov 18 22:36:30 EST 2025 Sat Nov 29 04:12:58 EST 2025 Fri Feb 21 02:37:43 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7485 |
| Language | English |
| License | Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c953t-407328f6c7ad80104a62b94a93432f8156f027b3b7d4421aee411a97a680f79a3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Current address: The Jackson Laboratory for Genomic Medicine, 263 Farmington Avenue, ASB Call Box 901Farmington, CT 06030. USA. These authors contributed equally. |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC3973747 |
| PMID | 24476892 |
| PQID | 1498087843 |
| PQPubID | 40569 |
| PageCount | 4 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3973747 proquest_miscellaneous_1493796266 proquest_journals_1498087843 gale_infotracmisc_A674223233 gale_infotracmisc_A361351612 gale_infotracgeneralonefile_A674223233 gale_infotracgeneralonefile_A361351612 gale_infotraccpiq_674223233 gale_infotraccpiq_361351612 gale_infotracacademiconefile_A674223233 gale_infotracacademiconefile_A361351612 gale_incontextgauss_ISR_A674223233 gale_incontextgauss_ISR_A361351612 gale_incontextgauss_ATWCN_A674223233 gale_incontextgauss_ATWCN_A361351612 pubmed_primary_24476892 crossref_citationtrail_10_1038_nature12946 crossref_primary_10_1038_nature12946 springer_journals_10_1038_nature12946 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-01-30 |
| PublicationDateYYYYMMDD | 2014-01-30 |
| PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-30 day: 30 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationSubtitle | International weekly journal of science |
| PublicationTitle | Nature (London) |
| PublicationTitleAbbrev | Nature |
| PublicationTitleAlternate | Nature |
| PublicationYear | 2014 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Spitale (CR16) 2013; 9 Shabalina, Ogurtsov, Spiridonov (CR4) 2006; 34 Barash (CR5) 2010; 465 Macias (CR26) 2012; 19 Wan, Kertesz, Spitale, Segal, Chang (CR1) 2011; 12 Bartel (CR6) 2009; 136 Skalsky (CR7) 2012; 8 Marín, Voellmy, von Erlach, Vanicek (CR8) 2012; 18 CR12 CR10 Grimson (CR9) 2007; 27 Wilkinson, Merino, Weeks (CR18) 2006; 1 Langmead, Salzberg (CR17) 2012; 9 Lewis, Burge, Bartel (CR19) 2005; 120 Salari, Kimchi-Sarfaty, Gottesman, Przytycka (CR13) 2013; 41 Barbosa-Morais (CR15) 2012; 338 Chi, Zang, Mele, Darnell (CR20) 2009; 460 Wilbert (CR25) 2012; 48 Kertesz (CR2) 2010; 467 Langmead, Trapnell, Pop, Salzberg (CR22) 2009; 10 CR23 Li (CR3) 2012; 1 Katz, Wang, Airoldi, Burge (CR14) 2010; 7 Halvorsen, Martin, Broadaway, Laederach (CR11) 2010; 6 König (CR21) 2010; 17 Anders (CR24) 2012; 40 B Langmead (BFnature12946_CR22) 2009; 10 A Grimson (BFnature12946_CR9) 2007; 27 ML Wilbert (BFnature12946_CR25) 2012; 48 BP Lewis (BFnature12946_CR19) 2005; 120 S Macias (BFnature12946_CR26) 2012; 19 BFnature12946_CR12 R Salari (BFnature12946_CR13) 2013; 41 G Anders (BFnature12946_CR24) 2012; 40 F Li (BFnature12946_CR3) 2012; 1 Y Katz (BFnature12946_CR14) 2010; 7 RC Spitale (BFnature12946_CR16) 2013; 9 KA Wilkinson (BFnature12946_CR18) 2006; 1 B Langmead (BFnature12946_CR17) 2012; 9 M Halvorsen (BFnature12946_CR11) 2010; 6 J König (BFnature12946_CR21) 2010; 17 NL Barbosa-Morais (BFnature12946_CR15) 2012; 338 SW Chi (BFnature12946_CR20) 2009; 460 Y Wan (BFnature12946_CR1) 2011; 12 M Kertesz (BFnature12946_CR2) 2010; 467 BFnature12946_CR23 Y Barash (BFnature12946_CR5) 2010; 465 BFnature12946_CR10 SA Shabalina (BFnature12946_CR4) 2006; 34 DP Bartel (BFnature12946_CR6) 2009; 136 RL Skalsky (BFnature12946_CR7) 2012; 8 RM Marín (BFnature12946_CR8) 2012; 18 20808897 - PLoS Genet. 2010 Aug;6(8):e1001074 20601959 - Nat Struct Mol Biol. 2010 Jul;17(7):909-15 23064747 - Genome Res. 2013 Feb;23(2):377-87 22915600 - RNA. 2012 Oct;18(10):1760-70 20445623 - Nature. 2010 May 6;465(7294):53-9 17612493 - Mol Cell. 2007 Jul 6;27(1):91-105 14685227 - Nature. 2003 Dec 18;426(6968):789-96 23125360 - Nucleic Acids Res. 2013 Jan 7;41(1):44-53 19536157 - Nature. 2009 Jul 23;460(7254):479-86 23258890 - Science. 2012 Dec 21;338(6114):1587-93 23178934 - Nat Chem Biol. 2013 Jan;9(1):18-20 22759654 - BMC Genomics. 2012;13 Suppl 4:S6 20811459 - Nature. 2010 Sep 2;467(7311):103-7 24476882 - Nature. 2014 Jan 30;505(7485):621-2 22086949 - Nucleic Acids Res. 2012 Jan;40(Database issue):D180-6 22832108 - Cell Rep. 2012 Jan 26;1(1):69-82 19167326 - Cell. 2009 Jan 23;136(2):215-33 21850044 - Nat Rev Genet. 2011 Sep;12(9):641-55 15652477 - Cell. 2005 Jan 14;120(1):15-20 19261174 - Genome Biol. 2009;10(3):R25 21057496 - Nat Methods. 2010 Dec;7(12):1009-15 22959275 - Mol Cell. 2012 Oct 26;48(2):195-206 24535248 - Nat Rev Genet. 2014 Apr;15(4):219 22291592 - PLoS Pathog. 2012 Jan;8(1):e1002484 22796965 - Nat Struct Mol Biol. 2012 Aug;19(8):760-6 22388286 - Nat Methods. 2012 Apr;9(4):357-9 16682450 - Nucleic Acids Res. 2006;34(8):2428-37 |
| References_xml | – volume: 467 start-page: 103 year: 2010 end-page: 107 ident: CR2 article-title: Genome-wide measurement of RNA secondary structure in yeast publication-title: Nature doi: 10.1038/nature09322 – volume: 9 start-page: 18 year: 2013 end-page: 20 ident: CR16 article-title: RNA SHAPE analysis in living cells publication-title: Nature Chem. Biol. doi: 10.1038/nchembio.1131 – volume: 12 start-page: 641 year: 2011 end-page: 655 ident: CR1 article-title: Understanding the transcriptome through RNA structure publication-title: Nature Rev. Genet. doi: 10.1038/nrg3049 – volume: 120 start-page: 15 year: 2005 end-page: 20 ident: CR19 article-title: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets publication-title: Cell doi: 10.1016/j.cell.2004.12.035 – volume: 6 start-page: e1001074 year: 2010 ident: CR11 article-title: Disease-associated mutations that alter the RNA structural ensemble publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1001074 – ident: CR12 – ident: CR10 – volume: 17 start-page: 909 year: 2010 end-page: 915 ident: CR21 article-title: iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution publication-title: Nature Struct. Mol. Biol. doi: 10.1038/nsmb.1838 – volume: 338 start-page: 1587 year: 2012 end-page: 1593 ident: CR15 article-title: The evolutionary landscape of alternative splicing in vertebrate species publication-title: Science doi: 10.1126/science.1230612 – volume: 27 start-page: 91 year: 2007 end-page: 105 ident: CR9 article-title: MicroRNA targeting specificity in mammals: determinants beyond seed pairing publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.06.017 – volume: 7 start-page: 1009 year: 2010 end-page: 1015 ident: CR14 article-title: Analysis and design of RNA sequencing experiments for identifying isoform regulation publication-title: Nature Methods doi: 10.1038/nmeth.1528 – volume: 19 start-page: 760 year: 2012 end-page: 766 ident: CR26 article-title: DGCR8 HITS-CLIP reveals novel functions for the Microprocessor publication-title: Nature Struct. Mol. Biol. doi: 10.1038/nsmb.2344 – volume: 41 start-page: 44 year: 2013 end-page: 53 ident: CR13 article-title: Sensitive measurement of single-nucleotide polymorphism-induced changes of RNA conformation: application to disease studies publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1009 – volume: 1 start-page: 69 year: 2012 end-page: 82 ident: CR3 article-title: Global analysis of RNA secondary structure in two metazoans publication-title: Cell. Rep. doi: 10.1016/j.celrep.2011.10.002 – ident: CR23 – volume: 18 start-page: 1760 year: 2012 end-page: 1770 ident: CR8 article-title: Analysis of the accessibility of CLIP bound sites reveals that nucleation of the miRNA:mRNA pairing occurs preferentially at the 3′-end of the seed match publication-title: RNA doi: 10.1261/rna.033282.112 – volume: 34 start-page: 2428 year: 2006 end-page: 2437 ident: CR4 article-title: A periodic pattern of mRNA secondary structure created by the genetic code publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl287 – volume: 8 start-page: e1002484 year: 2012 ident: CR7 article-title: The viral and cellular microRNA targetome in lymphoblastoid cell lines publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002484 – volume: 10 start-page: R25 year: 2009 ident: CR22 article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome publication-title: Genome Biol doi: 10.1186/gb-2009-10-3-r25 – volume: 9 start-page: 357 year: 2012 end-page: 359 ident: CR17 article-title: Fast gapped-read alignment with Bowtie 2 publication-title: Nature Methods doi: 10.1038/nmeth.1923 – volume: 136 start-page: 215 year: 2009 end-page: 233 ident: CR6 article-title: MicroRNAs: target recognition and regulatory functions publication-title: Cell doi: 10.1016/j.cell.2009.01.002 – volume: 48 start-page: 195 year: 2012 end-page: 206 ident: CR25 article-title: LIN28 binds messenger RNAs at GGAGA motifs and regulates splicing factor abundance publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.08.004 – volume: 40 start-page: D180 year: 2012 end-page: D186 ident: CR24 article-title: doRiNA: a database of RNA interactions in post-transcriptional regulation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr1007 – volume: 465 start-page: 53 year: 2010 end-page: 59 ident: CR5 article-title: Deciphering the splicing code publication-title: Nature doi: 10.1038/nature09000 – volume: 1 start-page: 1610 year: 2006 end-page: 1616 ident: CR18 article-title: Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution publication-title: Nature Protocols doi: 10.1038/nprot.2006.249 – volume: 460 start-page: 479 year: 2009 end-page: 486 ident: CR20 article-title: Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps publication-title: Nature doi: 10.1038/nature08170 – ident: BFnature12946_CR10 doi: 10.1186/1471-2164-13-S4-S6 – volume: 1 start-page: 69 year: 2012 ident: BFnature12946_CR3 publication-title: Cell. Rep. doi: 10.1016/j.celrep.2011.10.002 – volume: 467 start-page: 103 year: 2010 ident: BFnature12946_CR2 publication-title: Nature doi: 10.1038/nature09322 – volume: 9 start-page: 357 year: 2012 ident: BFnature12946_CR17 publication-title: Nature Methods doi: 10.1038/nmeth.1923 – volume: 40 start-page: D180 year: 2012 ident: BFnature12946_CR24 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr1007 – ident: BFnature12946_CR12 doi: 10.1101/gr.138545.112 – volume: 136 start-page: 215 year: 2009 ident: BFnature12946_CR6 publication-title: Cell doi: 10.1016/j.cell.2009.01.002 – volume: 7 start-page: 1009 year: 2010 ident: BFnature12946_CR14 publication-title: Nature Methods doi: 10.1038/nmeth.1528 – volume: 8 start-page: e1002484 year: 2012 ident: BFnature12946_CR7 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002484 – volume: 120 start-page: 15 year: 2005 ident: BFnature12946_CR19 publication-title: Cell doi: 10.1016/j.cell.2004.12.035 – volume: 19 start-page: 760 year: 2012 ident: BFnature12946_CR26 publication-title: Nature Struct. Mol. Biol. doi: 10.1038/nsmb.2344 – volume: 48 start-page: 195 year: 2012 ident: BFnature12946_CR25 publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.08.004 – volume: 12 start-page: 641 year: 2011 ident: BFnature12946_CR1 publication-title: Nature Rev. Genet. doi: 10.1038/nrg3049 – ident: BFnature12946_CR23 doi: 10.1038/nature02168 – volume: 1 start-page: 1610 year: 2006 ident: BFnature12946_CR18 publication-title: Nature Protocols doi: 10.1038/nprot.2006.249 – volume: 460 start-page: 479 year: 2009 ident: BFnature12946_CR20 publication-title: Nature doi: 10.1038/nature08170 – volume: 18 start-page: 1760 year: 2012 ident: BFnature12946_CR8 publication-title: RNA doi: 10.1261/rna.033282.112 – volume: 338 start-page: 1587 year: 2012 ident: BFnature12946_CR15 publication-title: Science doi: 10.1126/science.1230612 – volume: 9 start-page: 18 year: 2013 ident: BFnature12946_CR16 publication-title: Nature Chem. Biol. doi: 10.1038/nchembio.1131 – volume: 41 start-page: 44 year: 2013 ident: BFnature12946_CR13 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1009 – volume: 10 start-page: R25 year: 2009 ident: BFnature12946_CR22 publication-title: Genome Biol doi: 10.1186/gb-2009-10-3-r25 – volume: 465 start-page: 53 year: 2010 ident: BFnature12946_CR5 publication-title: Nature doi: 10.1038/nature09000 – volume: 6 start-page: e1001074 year: 2010 ident: BFnature12946_CR11 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1001074 – volume: 27 start-page: 91 year: 2007 ident: BFnature12946_CR9 publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.06.017 – volume: 34 start-page: 2428 year: 2006 ident: BFnature12946_CR4 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl287 – volume: 17 start-page: 909 year: 2010 ident: BFnature12946_CR21 publication-title: Nature Struct. Mol. Biol. doi: 10.1038/nsmb.1838 – reference: 24476882 - Nature. 2014 Jan 30;505(7485):621-2 – reference: 20811459 - Nature. 2010 Sep 2;467(7311):103-7 – reference: 20601959 - Nat Struct Mol Biol. 2010 Jul;17(7):909-15 – reference: 20445623 - Nature. 2010 May 6;465(7294):53-9 – reference: 22832108 - Cell Rep. 2012 Jan 26;1(1):69-82 – reference: 21850044 - Nat Rev Genet. 2011 Sep;12(9):641-55 – reference: 22759654 - BMC Genomics. 2012;13 Suppl 4:S6 – reference: 14685227 - Nature. 2003 Dec 18;426(6968):789-96 – reference: 23258890 - Science. 2012 Dec 21;338(6114):1587-93 – reference: 23064747 - Genome Res. 2013 Feb;23(2):377-87 – reference: 23178934 - Nat Chem Biol. 2013 Jan;9(1):18-20 – reference: 22291592 - PLoS Pathog. 2012 Jan;8(1):e1002484 – reference: 22796965 - Nat Struct Mol Biol. 2012 Aug;19(8):760-6 – reference: 22086949 - Nucleic Acids Res. 2012 Jan;40(Database issue):D180-6 – reference: 22915600 - RNA. 2012 Oct;18(10):1760-70 – reference: 19536157 - Nature. 2009 Jul 23;460(7254):479-86 – reference: 21057496 - Nat Methods. 2010 Dec;7(12):1009-15 – reference: 22959275 - Mol Cell. 2012 Oct 26;48(2):195-206 – reference: 23125360 - Nucleic Acids Res. 2013 Jan 7;41(1):44-53 – reference: 20808897 - PLoS Genet. 2010 Aug;6(8):e1001074 – reference: 19261174 - Genome Biol. 2009;10(3):R25 – reference: 22388286 - Nat Methods. 2012 Apr;9(4):357-9 – reference: 16682450 - Nucleic Acids Res. 2006;34(8):2428-37 – reference: 17612493 - Mol Cell. 2007 Jul 6;27(1):91-105 – reference: 19167326 - Cell. 2009 Jan 23;136(2):215-33 – reference: 15652477 - Cell. 2005 Jan 14;120(1):15-20 – reference: 24535248 - Nat Rev Genet. 2014 Apr;15(4):219 |
| SSID | ssj0005174 |
| Score | 2.6046772 |
| Snippet | An RNA secondary structure (RSS) map of coding and noncoding RNA from a human family (two parents and their child) is produced; this reveals that approximately... In parallel to the genetic code for protein synthesis, a second layer of information is embedded in all RNA transcripts in the form of RNA structure. RNA... |
| SourceID | pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 706 |
| SubjectTerms | 3' Untranslated Regions - genetics 45 45/91 631/208/212/2019 631/337/1645 Base Sequence Binding Sites Child Female Gene Expression Regulation - genetics Genetic code Genetic research Genetic variation Genetics Genome, Human - genetics Humanities and Social Sciences Humans letter Male MicroRNAs - chemistry MicroRNAs - genetics MicroRNAs - metabolism multidisciplinary Nucleic Acid Conformation Open Reading Frames - genetics Physiological aspects Point Mutation - genetics Protein biosynthesis Protein synthesis Ribonucleic acid RNA RNA - chemistry RNA - genetics RNA - metabolism RNA Splice Sites - genetics RNA-Binding Proteins - metabolism Science Structure Transcriptome - genetics |
| Title | Landscape and variation of RNA secondary structure across the human transcriptome |
| URI | https://link.springer.com/article/10.1038/nature12946 https://www.ncbi.nlm.nih.gov/pubmed/24476892 https://www.proquest.com/docview/1498087843 https://www.proquest.com/docview/1493796266 https://pubmed.ncbi.nlm.nih.gov/PMC3973747 |
| Volume | 505 |
| WOSCitedRecordID | wos000330321000046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAQT databaseName: Nature customDbUrl: eissn: 1476-4687 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: RNT dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.nature.com providerName: Nature Publishing – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M0K dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M7P dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: PCBAR dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M7S dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: PATMY dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7X7 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: KB. dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database (ProQuest) customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7RV dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest - Psychology Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2M dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest - Research Library customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2O dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: P5Z dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: BENPR dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 8C1 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2P dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYBhIvwMZX2agMGjCQwtI4jZ0n1FWbQFtL6AoUXiLHSUYlSLalm8R_z53jdknpygMvp1Y-X-3ad75L7n4mZNtXEvTIY5ZiKbdcJm1Lstiz2hD5RMpOUi50ofAR7_fFaOQH5oFbYdIqpzZRG-o4V_iMfBc8eWELLlz27vTMwluj8O2quUJjhawhSgLTqXvBVYrHHAqzqc-zmdgtYTPhsEPPt3IizdvlysE0nzQ59-ZUH0gHd_93KvfIHeOK0k65d9bJjSTbILd0SqgqNsi6UfuC7hhs6tf3yacjLA3GpCkKH-glRNp6aWme0kG_QwuMr2N5_puWwLQweyr1vCl4mlTfCEgneD5qa5X_Sh6Qzwf7w-57y9zKYCm_zSYQcCK-T-opLmOB0Zz0nMh3pY8lqimCz6QQ6kYs4rHrOi2ZJG6rJX0uPWGn3JfsIVnN8ix5TKjPoygFlw5kYWm7JyVvSalSJhzfUV7cIG-mKxMqA1mON2f8DPWrcybCyjI2yPaM-bRE6riGDZc4ROyLDJNrTuRFUYSd4dduP-wwD28sBK9vOZvHXXCrHMYa5Pkitg_Hg5qs65kqkl4ZpjSHOSppyiPgn0KErpq4f3BWZG7WONXp-CysyFnQWun7stZ6Uu60RcNZzliRuFVjBDumanIWNVd7T5UpNGa2CK80qUGezZqxJ6YOZkl-oXkY9yFuh6V_VKrwbH-Abwvhtg-_zWvKPWNA8PV6Szb-oUHYwY9nEIo3yIupGagM6-9t92T58DfJbfDEMR_MYvYWWQUVTZ6Sm-pyMi7Om2SFD74gHXFNBVDRbTXJ2t5-PxjAt8O9t0B79iFSp6fpR02DpraJmh4DDdrfoV_QGfa-_QErKbWQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VAoIL0PIyLbCglpdk1fG6u_YBoahQNWqIIATozazXdokEdhqnRf1T_EZm_EjtkIZTD9wi7bcTez07D3vmW4ANTyvcR4KbmsfSdLiyTMVDYW5j5hNoK4qlmzcKd2Wv5x4ceB-W4HfVC0NllZVNzA11mGp6R76FkbxrudJ1-JvRkUmnRtHX1eoIjUIt9qPTX5iyZa87b_H5btr27rvBzp5Znipgam-bTzBhIn6aWGipQpeyESXswHOURy2WMZGnxJiqBTyQoePYLRVFTqulPKmEa8XSUxzlXoLLaMdbVEIm-1_OSkpmWJ_LfkCLu1sFTSc6V4q0ax5w1g_UHOFskebMl9rcAe7e_N-W7hbcKENt1i72xgosRckqXM1LXnW2CiulWcvYi5J7--Vt-Nil1mcqCmP4g52ocaG6LI1Zv9dmGb0_CNX4lBXEu7jaTOXrzDCSZvmJh2xC_j-3xunP6A58vpCbvAvLSZpE94F5MghiDFlRFrXuC6VkSykdc9f2bC1CA15VmuDrkpKdTgb54eelAdz1a2pjwMYUPCqYSM6BkUr5xO2RUPHQoTrOMr89-LrT89tc0ImMGNUuhgnpYNhoc27A03mwzqd-Q9b5oJqk5yUoTvEetSrbP3CliIGsIe4fyJrMtQZSj4ZHfk3OnNHa3GeN0cNC0-ZdzmJgTeJ6A4h2WjfkzBuuz642r1-6kcw_27kGPJkO00wqjUyi9DjHcOkJDLQNuFeYjKl-YOwuhevhf8uGMZkCiFy-OZIMv-ck85incOlIAzYrs1O7rL_V7sHiy38M1_YG77t-t9PbX4PrmHVQ7ZvJrXVYxu0aPYQr-mQyzMaPcovK4NtF26E_Xf8CEQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6V8hAXoOVlWmBBLS_JiuN1vesDQlFKRNQoKqWI3sx6bZdIYKdxWtS_xq9jxo9ghzSceuAWaWcnu-vZedgz3wBseVrhPXK5qXksTIcry1Q8dM0djHwCbUWxkHmh8EAMh_LoyNtfgV9VLQylVVY6MVfUYarpHXkLPXlpSSEd3orLtIj93d678YlJHaToS2vVTqMQkb3o_CeGb9nb_i4-623b7r0_7H4wyw4DpvZ2-BSDJ8KqiV0tVCgpMlGuHXiO8qjcMiYglRjDtoAHInQcu62iyGm3lSeUK61YeIoj3ytwVeBmKZ1MdmvpJXMI0GVtoMVlq4DsRENLXnfNGs7bhJpRnE_YnPtqmxvD3u3_-RjvwK3SBWed4s6swUqUrMP1PBVWZ-uwVqq7jL0qMblf34WPAyqJpmQxhj_YmZoUIs3SmB0MOyyj9wqhmpyzApAXT56p_MwZetgs74TIpuQX5Fo6_RHdg8-Xssn7sJqkSfQQmCeCIEZXFnlRSb-rlGgrpWMubc_WbmjAm0oqfF1CtVPHkO9-njLApV8TIQO2ZsTjAqHkAjISL58wPxJ67MfqNMv8zuGX7tDvcJc6NaK3u5zMFQ66kzbnBjxfRNb_dNDgdTFRjdPLkihOcY9alWUheFKETNZg9w_KGs-NBqUej078Gp8Fo7W5Lxqjx4WkLVrOcsIax80GIepv3eCzaLg-u7rIfmleMv_PLTbg2WyYZlLKZBKlpzkNF56LDrgBDwr1MZMP9OmFKz38b9FQLDMCAp1vjiSjbzn4PMYvXDjCgO1KBdWW9bfYPVq-_KdwA9WPP-gP9zbgJgYjlBJncmsTVvG2Ro_hmj6bjrLJk1y5Mvh62WroN78ICmw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Landscape+and+variation+of+RNA+secondary+structure+across+the+human+transcriptome&rft.jtitle=Nature+%28London%29&rft.au=Wan%2C+Yue&rft.au=Qu%2C+Kun&rft.au=Zhang%2C+Qiangfeng+Cliff&rft.au=Flynn%2C+Ryan+A&rft.date=2014-01-30&rft.issn=1476-4687&rft.eissn=1476-4687&rft.volume=505&rft.issue=7485&rft.spage=706&rft_id=info:doi/10.1038%2Fnature12946&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |