Pypromice: A Python Package for Processing Automated Weather Station Data

The pypromice Python package is for processing and handling observation datasets from automated weather stations (AWS). It is primarily aimed at users of AWS data from the Geological Survey of Denmark and Greenland (GEUS), which collects and distributes in situ weather station observations to the cr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of open source software Ročník 8; číslo 86; s. 5298
Hlavní autoři: How, Penelope R, Wright, Patrick J, Mankoff, Kenneth D, Vandecrux, Baptiste, Fausto, Robert S, Ahlstrøm, Andreas P
Médium: Journal Article
Jazyk:angličtina
Vydáno: Goddard Space Flight Center Open Journals 01.06.2023
Témata:
ISSN:2475-9066, 2475-9066
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The pypromice Python package is for processing and handling observation datasets from automated weather stations (AWS). It is primarily aimed at users of AWS data from the Geological Survey of Denmark and Greenland (GEUS), which collects and distributes in situ weather station observations to the cryospheric science research community. Functionality in pypromice is primarily handled using two key open-source Python packages, xarray (Hoyer & Hamman, 2017) and pandas (The pandas development team, 2020). A defined processing workflow is included in pypromice for transforming original AWS observations (Level 0, L0) to a usable, CF-convention-compliant dataset (Level 3, L3) (Figure 1). Intermediary processing levels (L1,L2) refer to key stages in the workflow, namely the conversion of variables to physical measurements and variable filtering (L1), cross-variable corrections and user-defined data flagging and fixing (L2), and derived variables (L3). Information regarding the station configuration is needed to perform the processing, such as instrument calibration coefficients and station type (one-boom tripod or two-boom mast station design, for example), which are held in a toml configuration file. Two example configuration files are provided with pypromice, which are also used in the package’s unit tests. More detailed documentation of the AWS design, instrumentation, and processing steps are described in Fausto et al. (2021).
AbstractList The pypromice Python package is for processing and handling observation datasets from automated weather stations (AWS). It is primarily aimed at users of AWS data from the Geological Survey of Denmark and Greenland (GEUS), which collects and distributes in situ weather station observations to the cryospheric science research community. Functionality in pypromice is primarily handled using two key open-source Python packages, xarray (Hoyer & Hamman, 2017) and pandas (The pandas development team, 2020). A defined processing workflow is included in pypromice for transforming original AWS observations (Level 0, L0) to a usable, CF-convention-compliant dataset (Level 3, L3) (Figure 1). Intermediary processing levels (L1,L2) refer to key stages in the workflow, namely the conversion of variables to physical measurements and variable filtering (L1), cross-variable corrections and user-defined data flagging and fixing (L2), and derived variables (L3). Information regarding the station configuration is needed to perform the processing, such as instrument calibration coefficients and station type (one-boom tripod or two-boom mast station design, for example), which are held in a toml configuration file. Two example configuration files are provided with pypromice, which are also used in the package’s unit tests. More detailed documentation of the AWS design, instrumentation, and processing steps are described in Fausto et al. (2021).
Audience PUBLIC
Author Vandecrux, Baptiste
Ahlstrøm, Andreas P
Wright, Patrick J
Fausto, Robert S
How, Penelope R
Mankoff, Kenneth D
Author_xml – sequence: 1
  givenname: Penelope R
  orcidid: 0000-0002-8088-8497
  surname: How
  fullname: How, Penelope R
  organization: Geological Survey of Denmark and Greenland
– sequence: 2
  givenname: Patrick J
  orcidid: 0000-0003-2999-9076
  surname: Wright
  fullname: Wright, Patrick J
  organization: Geological Survey of Denmark and Greenland
– sequence: 3
  givenname: Kenneth D
  orcidid: 0000-0001-5453-2019
  surname: Mankoff
  fullname: Mankoff, Kenneth D
  organization: Autonomic Integra
– sequence: 4
  givenname: Baptiste
  orcidid: 0000-0002-4169-8973
  surname: Vandecrux
  fullname: Vandecrux, Baptiste
  organization: Geological Survey of Denmark and Greenland
– sequence: 5
  givenname: Robert S
  orcidid: 0000-0003-1317-8185
  surname: Fausto
  fullname: Fausto, Robert S
  organization: Geological Survey of Denmark and Greenland
– sequence: 6
  givenname: Andreas P
  orcidid: 0000-0001-8235-8070
  surname: Ahlstrøm
  fullname: Ahlstrøm, Andreas P
  organization: Geological Survey of Denmark and Greenland
BookMark eNpNkD1PwzAURS1UJErpxMrgHaU8O7Fx2KryVakSkajEaD07TptC4so2Q_89oWVgenc490rvXJJR73tHyDWDGWcMxN3OxzgDwUt1Rsa8uBdZCVKO_uULMo1xBwBMSS4ZG5NlddgH37XWPdA5rQ5p63taof3EjaOND7QK3roY235D59_Jd5hcTT8cpq0L9D1haofCIya8IucNfkU3_bsTsn5-Wi9es9Xby3IxX2W2LFSGwLEulDUKjUNXcosSHRiJaI0wDbAamBVW5GIglW0EZ4UEgwhouIB8Qm5PszYM7wbX6H1oOwwHzUAfPehfD_roYaBvTnSPEXWfQtQceD4YUErk-Q9BIFvJ
Cites_doi 10.3389/feart.2022.970026
10.5194/essd-13-3819-2021
10.1038/nclimate2899
10.1175/BAMS-D-22-0082.1
10.5281/zenodo.3509134
10.1038/s41558-022-01441-2
10.22008/FK2/IPOHT5
10.22008/FK2/IW73UU
10.22008/FK2/VVXGUT
10.34194/geusb.v15.5045
10.17897/E594-NV64
10.5334/jors.148
10.25923/c430-hb50
10.1038/s41467-022-34049-3
ContentType Journal Article
Copyright Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL -- Approver Comments: No civil servants / IPAs are listed as authors; no NASA ownership rights
Copyright_xml – notice: Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL -- Approver Comments: No civil servants / IPAs are listed as authors; no NASA ownership rights
DBID CYE
CYI
AAYXX
CITATION
DOI 10.21105/joss.05298
DatabaseName NASA Scientific and Technical Information
NASA Technical Reports Server
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2475-9066
ExternalDocumentID 10_21105_joss_05298
20230008853
GrantInformation 281945.02.04.03.94
80GSFC23CA041
GroupedDBID AAFWJ
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CYE
CYI
GROUPED_DOAJ
M~E
OK1
AAYXX
CITATION
ID FETCH-LOGICAL-c948-a02ad48cb8abeae92ca6ae0b6aacb5bf01d01c5c53502a8cf521460baa0ab2503
ISSN 2475-9066
IngestDate Sat Nov 29 06:13:30 EST 2025
Fri Nov 21 15:41:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 86
Keywords Pypromice
Glaciology
Climate
Weather Station Data
Kalaallit-Nunaat
Data Processing
Gc-Net
Geus
Greenland
Python
Language English
License Creative Commons License: CCBY
http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c948-a02ad48cb8abeae92ca6ae0b6aacb5bf01d01c5c53502a8cf521460baa0ab2503
Notes GSFC
Goddard Space Flight Center
ORCID 0000-0001-8235-8070
0000-0003-2999-9076
0000-0002-8088-8497
0000-0001-5453-2019
0000-0002-4169-8973
0000-0003-1317-8185
OpenAccessLink http://dx.doi.org/10.21105/joss.05298
ParticipantIDs crossref_primary_10_21105_joss_05298
nasa_ntrs_20230008853
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Goddard Space Flight Center
PublicationPlace_xml – name: Goddard Space Flight Center
PublicationTitle Journal of open source software
PublicationYear 2023
Publisher Open Journals
Publisher_xml – name: Open Journals
References The pandas development team (pandas-decpandas-2020) 2020
Fausto (fausto-programme-2021) 2021; 13
Ahlstrøm (ahlstrom-programme-2008) 2008; 15
Steffen (steffen-gcnet-2023) 2023
Hoyer (hoyer-xarray-2017) 2017; 5
Machguth (macguth-greenland-2016) 2016; 6
Zender (zender-jaws-2019)
How (how-pypromice-2022) 2023
GEM (gem-glaciobasis-2020) 2020
Messerli (messerli-snow-2022) 2022; 10
Easterbrook (easterbrook-pywws-2023)
Moon (moon-greenland-2022a) 2022
Moon (moon-greenland-2022b) 2022; 103
Vandecrux (vandecrux-gcnet-2020)
Oehri (oehri_vegetation_2022) 2022; 13
Steffen (steffen-greenland-1996) 1996; 96
Box (box-greenland-2022) 2022; 12
How (how-one-boom-2022) 2023
References_xml – ident: easterbrook-pywws-2023
  article-title: Python software for USB Wireless Weather Stations
– volume: 10
  issn: 2296-6463
  year: 2022
  ident: messerli-snow-2022
  article-title: Snow cover evolution at Qasigiannguit Glacier, Southwest Greenland: A comparison of time-lapse imagery and mass balance data
  publication-title: Frontiers in Earth Science
  doi: 10.3389/feart.2022.970026
– volume: 96
  year: 1996
  ident: steffen-greenland-1996
  article-title: Greenland Climate Network: GC-Net, in US Army Cold Regions Reattach and Engineering (CRREL)
  publication-title: CRREL Special Report
– volume: 13
  issn: 1866-3508
  issue: 8
  year: 2021
  ident: fausto-programme-2021
  article-title: Programme for Monitoring of the Greenland Ice Sheet (PROMICE) automatic weather station data
  publication-title: Earth System Science Data
  doi: 10.5194/essd-13-3819-2021
– volume: 6
  year: 2016
  ident: macguth-greenland-2016
  article-title: Greenland meltwater storage in firn limited by near-surface ice formation
  publication-title: Nature Climate Change
  doi: 10.1038/nclimate2899
– ident: zender-jaws-2019
  article-title: JAWS: An extensible toolkit to harmonize and analyze polar automatic weather station datasets, manuscript in preparation for geosci. Model dev.
– volume: 103
  year: 2022
  ident: moon-greenland-2022b
  article-title: Greenland Ice Sheet. In: State of the Climate in 2021 - The Arctic
  publication-title: Bulletin of the American Meteorological Society
  doi: 10.1175/BAMS-D-22-0082.1
– year: 2020
  ident: pandas-decpandas-2020
  article-title: Pandas-dec/pandas: Pandas
  doi: 10.5281/zenodo.3509134
– volume: 12
  year: 2022
  ident: box-greenland-2022
  article-title: Greenland Ice Sheet climate disequilibrium and committed sea-level rise
  publication-title: Nature Climate Change
  doi: 10.1038/s41558-022-01441-2
– ident: vandecrux-gcnet-2020
  article-title: The GC-Net Level 1 dataset and processing scripts
– year: 2023
  ident: how-pypromice-2022
  article-title: pypromice
  doi: 10.22008/FK2/IPOHT5
– year: 2023
  ident: how-one-boom-2022
  article-title: PROMICE and GC-Net automated weather station data in Greenland
  doi: 10.22008/FK2/IW73UU
– year: 2023
  ident: steffen-gcnet-2023
  article-title: GC-Net Level 1 automated weather station data
  doi: 10.22008/FK2/VVXGUT
– volume: 15
  year: 2008
  ident: ahlstrom-programme-2008
  article-title: A new programme for monitoring the mass loss of the Greenland Ice Sheet
  publication-title: GEUS Bulletin
  doi: 10.34194/geusb.v15.5045
– year: 2020
  ident: gem-glaciobasis-2020
  article-title: GlacioBasis Zackenberg - snow cover - snow depth radar
  publication-title: Dataset
  doi: 10.17897/E594-NV64
– volume: 5
  issn: 2049-9647
  issue: 1
  year: 2017
  ident: hoyer-xarray-2017
  article-title: xarray: N-d labeled Arrays and Datasets in Python
  publication-title: Journal of Open Research Software
  doi: 10.5334/jors.148
– year: 2022
  ident: moon-greenland-2022a
  article-title: Greenland Ice Sheet
  publication-title: Arctic report card 2022
  doi: 10.25923/c430-hb50
– volume: 13
  issue: 1
  year: 2022
  ident: oehri_vegetation_2022
  article-title: Vegetation type is an important predictor of the arctic summer land surface energy budget
  publication-title: Nature Communications
  doi: 10.1038/s41467-022-34049-3
SSID ssj0001862611
Score 2.2210166
Snippet The pypromice Python package is for processing and handling observation datasets from automated weather stations (AWS). It is primarily aimed at users of AWS...
SourceID crossref
nasa
SourceType Index Database
Publisher
StartPage 5298
SubjectTerms Computer Programming and Software
Title Pypromice: A Python Package for Processing Automated Weather Station Data
URI https://ntrs.nasa.gov/citations/20230008853
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2475-9066
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001862611
  issn: 2475-9066
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2475-9066
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001862611
  issn: 2475-9066
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECbctEOXPlM0fQQcsglqJZG0qG5BH0gLJDAKo8gmHClpqAPZcOzUXfof-o97R1KSk3pIhy6yQZG2xPtw-u50D8aOkESgVCsVC4m2iZRCxjoVgMpQ5DZtxkqpyjWbyM_O9Pl5MRmNfne5MFcXedvqzaZY_FdR4xgKm1Jn_0Hc_Y_iAH5HoeMRxY7HWwl-QUlM1GTeJ51PflJ1gAhN4xmF51BU4cInB7j0xPVqjpyVYtA9FyTfgoNESFrbxVyp41bkvf740ax-wBBBe-LfFU1QhV7gvOjrm7_9AL4twCz60p87hXY29_UhQ6JQ9KE_-Y383Ha53vj3I6jjLkN0UvBWZGKIqvJKLZO5iotkHMpf7xgLWllvgU9vq1iV-bbVN3U_WbJUJ-M7JWcm3azrFbZvPPn6eES0hNzykhaXbvEddjfLVUGK8vTXltuOLEDX1bm_ap_16da_Hf78Gs_Za6ErmO54y_QRexDExo89UB6zUd0-YQ-7Zh486Pan7HOPm3f8mHvU8IAajqjhA2p4jxoeUMMDajihZp9NP32cvj-JQ5-N2BZSx5BkUEltjQZTQ11kFsZQJ2YMYI0yTZJWSWqVVULhTG0bRc3gEwOQgEEGLZ7h_c3b-jnjFkRTS6SNaW0kPipMI0DYphIGGmSO9oAddZtSLnw1lXLH3h-wfdqwsl0tL0tCETFV5JUvbrf8Jbs_QO8V21st1_Vrds9eIT6Xh87rcuik-gdb3HTq
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=pypromice%3A+A+Python+package+for+processing+automated+weather+station+data&rft.jtitle=Journal+of+open+source+software&rft.au=How%2C+Penelope+R.&rft.au=Wright%2C+Patrick+J.&rft.au=Mankoff%2C+Kenneth+D.&rft.au=Vandecrux%2C+Baptiste&rft.date=2023-06-01&rft.issn=2475-9066&rft.eissn=2475-9066&rft.volume=8&rft.issue=86&rft.spage=5298&rft_id=info:doi/10.21105%2Fjoss.05298&rft.externalDBID=n%2Fa&rft.externalDocID=10_21105_joss_05298
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-9066&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-9066&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-9066&client=summon