An inverse problem for Sturm-Liouville equations with a fixed node

In this paper, we study a kind of inverse nodal problems for the classical Sturm-Liouville problems. To be precise, we prove the sharp lower bounds for the L1-norms of potentials when the unique node of the second eigenfunction is given. The proof is based on a strong continuity of the nodes in the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of Differential Equations Ročník 454; s. 113966
Hlavní autoři: Chu, Jifeng, Meng, Gang, Xie, Nana
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 15.02.2026
Témata:
ISSN:0022-0396
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we study a kind of inverse nodal problems for the classical Sturm-Liouville problems. To be precise, we prove the sharp lower bounds for the L1-norms of potentials when the unique node of the second eigenfunction is given. The proof is based on a strong continuity of the nodes in the potentials and the results on sharp bounds for the locations of the nodes. The key technique is to construct the extremal potentials.
ISSN:0022-0396
DOI:10.1016/j.jde.2025.113966