An inverse problem for Sturm-Liouville equations with a fixed node
In this paper, we study a kind of inverse nodal problems for the classical Sturm-Liouville problems. To be precise, we prove the sharp lower bounds for the L1-norms of potentials when the unique node of the second eigenfunction is given. The proof is based on a strong continuity of the nodes in the...
Uložené v:
| Vydané v: | Journal of Differential Equations Ročník 454; s. 113966 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
15.02.2026
|
| Predmet: | |
| ISSN: | 0022-0396 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, we study a kind of inverse nodal problems for the classical Sturm-Liouville problems. To be precise, we prove the sharp lower bounds for the L1-norms of potentials when the unique node of the second eigenfunction is given. The proof is based on a strong continuity of the nodes in the potentials and the results on sharp bounds for the locations of the nodes. The key technique is to construct the extremal potentials. |
|---|---|
| ISSN: | 0022-0396 |
| DOI: | 10.1016/j.jde.2025.113966 |