An inverse problem for Sturm-Liouville equations with a fixed node
In this paper, we study a kind of inverse nodal problems for the classical Sturm-Liouville problems. To be precise, we prove the sharp lower bounds for the L1-norms of potentials when the unique node of the second eigenfunction is given. The proof is based on a strong continuity of the nodes in the...
Gespeichert in:
| Veröffentlicht in: | Journal of Differential Equations Jg. 454; S. 113966 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
15.02.2026
|
| Schlagworte: | |
| ISSN: | 0022-0396 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper, we study a kind of inverse nodal problems for the classical Sturm-Liouville problems. To be precise, we prove the sharp lower bounds for the L1-norms of potentials when the unique node of the second eigenfunction is given. The proof is based on a strong continuity of the nodes in the potentials and the results on sharp bounds for the locations of the nodes. The key technique is to construct the extremal potentials. |
|---|---|
| ISSN: | 0022-0396 |
| DOI: | 10.1016/j.jde.2025.113966 |