Engineered TM(3d)-O(2p)-RE(4f) gradient orbital with coupled adsorption evolution and lattice oxygen mechanism towards robust oxygen evolution
Gespeichert in:
| Veröffentlicht in: | Chemical engineering journal (Lausanne, Switzerland : 1996) S. 171042 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
01.11.2025
|
| ISSN: | 1385-8947 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| ArticleNumber | 171042 |
|---|---|
| Author | Hao, Yiting Yang, Zhentao Wang, Hongyu Liu, Guihua Li, Jingde Du, Xiaohang Zhang, Kai Liu, Mei Saleem, Muhammad Hassaan |
| Author_xml | – sequence: 1 givenname: Yiting surname: Hao fullname: Hao, Yiting – sequence: 2 givenname: Zhentao surname: Yang fullname: Yang, Zhentao – sequence: 3 givenname: Mei surname: Liu fullname: Liu, Mei – sequence: 4 givenname: Kai surname: Zhang fullname: Zhang, Kai – sequence: 5 givenname: Hongyu surname: Wang fullname: Wang, Hongyu – sequence: 6 givenname: Muhammad Hassaan surname: Saleem fullname: Saleem, Muhammad Hassaan – sequence: 7 givenname: Guihua surname: Liu fullname: Liu, Guihua – sequence: 8 givenname: Xiaohang surname: Du fullname: Du, Xiaohang – sequence: 9 givenname: Jingde surname: Li fullname: Li, Jingde |
| BookMark | eNo90MluwjAUBVAvqFSg_YDuvIRFUttxpmWF6CBRIVXsIw_PkCjYkW1K-Yl-c6HT6l3p6d7FmaCRdRYQuqMkpYQW912qoEsZYXlKS0o4G6Exzao8qWpeXqNJCB0hpKhpPUafS7ttLYAHjTevs0zPk_WMDfPkbTnjZo63XugWbMTOyzaKHh_buMPKHYb-3BA6OD_E1lkM764_fCdhNe5FjK0C7D5OW7B4D2onbBv2OLqj8Dpg7-QhxL__f_kGXRnRB7j9vVO0eVxuFs_Jav30snhYJarmLKkYBVYWvIasliKDTHIiQRWKl8zkJde80GcIXVJjKsOgIHnJKkmlMVRKrbIpoj-zyrsQPJhm8O1e-FNDSXMxbLrmbNhcDJsfw-wLffNsPQ |
| Cites_doi | 10.1038/s41467-018-04788-3 10.1002/anie.202107390 10.1103/PhysRevLett.55.418 10.1038/s41560-018-0097-0 10.1002/adfm.202112674 10.1007/s40820-022-00857-x 10.1016/j.apcatb.2020.119738 10.1021/acs.chemrev.1c00644 10.1021/jacs.3c13746 10.1038/s41467-021-24182-w 10.1038/s41929-021-00656-4 10.1002/adfm.202305243 10.1021/acs.chemrev.2c00573 10.1002/aenm.202101281 10.1002/adma.202206540 10.1021/acsenergylett.1c00608 10.1021/acs.accounts.3c00059 10.1021/acsomega.2c02479 10.1021/acs.energyfuels.1c02087 10.1038/s41467-024-52682-y 10.1016/j.apcatb.2023.122599 10.1021/acs.chemrev.5b00603 10.1002/smll.202303169 10.1038/s41467-023-41706-8 10.1038/s41560-019-0355-9 10.1038/s41586-022-05296-7 10.1002/adma.202408634 10.1038/s41467-024-45320-0 10.1021/acs.jpcc.7b06643 10.1016/j.apcatb.2022.121491 10.1016/j.jechem.2023.12.018 10.1016/j.nanoen.2020.104653 10.1039/D4EE01588F 10.1016/j.apcatb.2022.122103 10.1016/j.cej.2024.155063 10.1016/j.cej.2022.136432 10.1002/adma.202406682 10.1002/aenm.202301162 10.1103/PhysRevB.44.6090 10.1038/s41467-020-19729-2 10.1039/C4TA05770H |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cej.2025.171042 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_cej_2025_171042 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9DU AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO AAYXX ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABXDB ACDAQ ACLOT ACRLP ACVFH ADBBV ADCNI ADEWK ADEZE AEBSH AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BKOMP BLECG BLXMC CITATION CS3 DU5 EBS EFJIC EFKBS EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSJ SSZ T5K ZY4 ~G- ~HD |
| ID | FETCH-LOGICAL-c942-821e27649e39ba3e3b40bec6c472f574d46d016d71ff8f2e605728b1bff1bbdc3 |
| ISSN | 1385-8947 |
| IngestDate | Thu Nov 27 00:55:01 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c942-821e27649e39ba3e3b40bec6c472f574d46d016d71ff8f2e605728b1bff1bbdc3 |
| ParticipantIDs | crossref_primary_10_1016_j_cej_2025_171042 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-00 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-00 |
| PublicationDecade | 2020 |
| PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
| PublicationYear | 2025 |
| References | Zaanen (10.1016/j.cej.2025.171042_bb0120) 1985; 55 Li (10.1016/j.cej.2025.171042_bb0030) 2022; 14 Gu (10.1016/j.cej.2025.171042_bb0195) 2021; 60 Wang (10.1016/j.cej.2025.171042_bb0070) 2022; 34 van Elp (10.1016/j.cej.2025.171042_bb0115) 1991; 44 Zhang (10.1016/j.cej.2025.171042_bb0020) 2021; 284 Liu (10.1016/j.cej.2025.171042_bb0180) 2021; 11 Wang (10.1016/j.cej.2025.171042_bb0035) 2022; 34 Li (10.1016/j.cej.2025.171042_bb0150) 2022; 7 Chen (10.1016/j.cej.2025.171042_bb0175) 2022; 443 He (10.1016/j.cej.2025.171042_bb0215) 2022; 13 Huang (10.1016/j.cej.2025.171042_bb0065) 2024; 17 Gorlin (10.1016/j.cej.2025.171042_bb0095) 2020; 11 Assat (10.1016/j.cej.2025.171042_bb0105) 2018; 3 Wang (10.1016/j.cej.2025.171042_bb0060) 2024; 64 Wang (10.1016/j.cej.2025.171042_bb0125) 2022; 611 Montini (10.1016/j.cej.2025.171042_bb0080) 2016; 116 Zheng (10.1016/j.cej.2025.171042_bb0085) 2022; 122 Hwang (10.1016/j.cej.2025.171042_bb0240) 2021; 4 Liang (10.1016/j.cej.2025.171042_bb0190) 2024; 36 Chen (10.1016/j.cej.2025.171042_bb0130) 2024; 20 Schilling (10.1016/j.cej.2025.171042_bb0145) 2017; 121 Xie (10.1016/j.cej.2025.171042_bb0200) 2020; 71 Huang (10.1016/j.cej.2025.171042_bb0220) 2021; 12 Yin (10.1016/j.cej.2025.171042_bb0050) 2024; 146 Xin (10.1016/j.cej.2025.171042_bb0040) 2023; 33 Yang (10.1016/j.cej.2025.171042_bb0160) 2022; 314 Wang (10.1016/j.cej.2025.171042_bb0045) 2023; 14 Gultom (10.1016/j.cej.2025.171042_bb0010) 2023; 322 Wang (10.1016/j.cej.2025.171042_bb0075) 2023; 7 Jiang (10.1016/j.cej.2025.171042_bb0135) 2023; 56 Wang (10.1016/j.cej.2025.171042_bb0225) 2023; 14 Chen (10.1016/j.cej.2025.171042_bb0230) 2022; 32 Zeng (10.1016/j.cej.2025.171042_bb0015) 2022; 12 Jiao (10.1016/j.cej.2025.171042_bb0055) 2024; 498 Li (10.1016/j.cej.2025.171042_bb0100) 2023; 13 Ye (10.1016/j.cej.2025.171042_bb0205) 2024; 15 Zhang (10.1016/j.cej.2025.171042_bb0005) 2023; 123 Guo (10.1016/j.cej.2025.171042_bb0090) 2024; 36 Wang (10.1016/j.cej.2025.171042_bb0170) 2023; 35 Anantharaj (10.1016/j.cej.2025.171042_bb0185) 2021 Badreldin (10.1016/j.cej.2025.171042_bb0025) 2023; 330 Yan (10.1016/j.cej.2025.171042_bb0140) 2018; 9 Yu (10.1016/j.cej.2025.171042_bb0165) 2021; 35 Liang (10.1016/j.cej.2025.171042_bb0155) 2015; 3 Huang (10.1016/j.cej.2025.171042_bb0110) 2019; 4 Luo (10.1016/j.cej.2025.171042_bb0235) 2024; 15 Na (10.1016/j.cej.2025.171042_bb0210) 2024; 91 |
| References_xml | – volume: 9 start-page: 2373 issue: 1 year: 2018 ident: 10.1016/j.cej.2025.171042_bb0140 article-title: Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution publication-title: Nat. Commun. doi: 10.1038/s41467-018-04788-3 – volume: 60 start-page: 20253 issue: 37 year: 2021 ident: 10.1016/j.cej.2025.171042_bb0195 article-title: Defect-rich high-entropy oxide nanosheets for efficient 5-hydroxymethylfurfural electrooxidation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202107390 – volume: 55 start-page: 418 issue: 4 year: 1985 ident: 10.1016/j.cej.2025.171042_bb0120 article-title: Band gaps and electronic structure of transition-metal compounds publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.55.418 – volume: 3 start-page: 373 issue: 5 year: 2018 ident: 10.1016/j.cej.2025.171042_bb0105 article-title: Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries publication-title: Nat. Energy doi: 10.1038/s41560-018-0097-0 – volume: 34 issue: 50 year: 2022 ident: 10.1016/j.cej.2025.171042_bb0035 article-title: Understanding of oxygen redox in the oxygen evolution reaction – volume: 32 issue: 26 year: 2022 ident: 10.1016/j.cej.2025.171042_bb0230 article-title: S-doping triggers redox Reactivities of both Iron and lattice oxygen in FeOOH for low-cost and high-performance water oxidation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202112674 – volume: 14 start-page: 112 issue: 1 year: 2022 ident: 10.1016/j.cej.2025.171042_bb0030 article-title: Oxygen evolution reaction in energy conversion and storage: design strategies under and beyond the energy scaling relationship publication-title: Nano-Micro Lett. doi: 10.1007/s40820-022-00857-x – volume: 284 year: 2021 ident: 10.1016/j.cej.2025.171042_bb0020 article-title: Nitrogen-doped carbon wrapped co-Mo2C dual Mott-Schottky nanosheets with large porosity for efficient water electrolysis publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.119738 – volume: 122 start-page: 5519 issue: 6 year: 2022 ident: 10.1016/j.cej.2025.171042_bb0085 article-title: Rare-earth doping in nanostructured inorganic materials publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00644 – volume: 146 start-page: 6846 issue: 10 year: 2024 ident: 10.1016/j.cej.2025.171042_bb0050 article-title: Ir single atoms boost metal-oxygen Covalency on selenide-derived NiOOH for direct intramolecular oxygen coupling publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c13746 – volume: 12 start-page: 3992 issue: 1 year: 2021 ident: 10.1016/j.cej.2025.171042_bb0220 article-title: Tuning of lattice oxygen reactivity and scaling relation to construct better oxygen evolution electrocatalyst publication-title: Nat. Commun. doi: 10.1038/s41467-021-24182-w – volume: 4 start-page: 663 issue: 8 year: 2021 ident: 10.1016/j.cej.2025.171042_bb0240 article-title: Regulating oxygen activity of perovskites to promote NOx oxidation and reduction kinetics publication-title: Nat. Catal. doi: 10.1038/s41929-021-00656-4 – volume: 33 issue: 45 year: 2023 ident: 10.1016/j.cej.2025.171042_bb0040 article-title: Coupling adsorbed evolution and lattice oxygen mechanism in Fe-co(OH)2/Fe2O3 heterostructure for enhanced electrochemical water oxidation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202305243 – volume: 123 start-page: 7119 issue: 11 year: 2023 ident: 10.1016/j.cej.2025.171042_bb0005 article-title: Water electrolysis toward elevated temperature: advances, challenges and frontiers publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.2c00573 – volume: 11 issue: 33 year: 2021 ident: 10.1016/j.cej.2025.171042_bb0180 article-title: Interfacing or doping? Role of Ce in highly promoted water oxidation of NiFe-layered double hydroxide publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202101281 – volume: 12 issue: 33 year: 2022 ident: 10.1016/j.cej.2025.171042_bb0015 article-title: Surface reconstruction of water splitting electrocatalysts publication-title: Adv. Energy Mater. – volume: 34 issue: 42 year: 2022 ident: 10.1016/j.cej.2025.171042_bb0070 article-title: Engineering 3d-2p-4f gradient orbital coupling to enhance Electrocatalytic oxygen reduction publication-title: Adv. Mater. doi: 10.1002/adma.202206540 – volume: 64 issue: 3 year: 2024 ident: 10.1016/j.cej.2025.171042_bb0060 article-title: Importing atomic rare-earth sites to activate lattice oxygen of spinel oxides for electrocatalytic oxygen evolution publication-title: Angew. Chem. Int. Ed. – start-page: 1607 year: 2021 ident: 10.1016/j.cej.2025.171042_bb0185 article-title: The pitfalls of using Potentiodynamic polarization curves for Tafel analysis in Electrocatalytic water splitting publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00608 – volume: 56 start-page: 1421 issue: 12 year: 2023 ident: 10.1016/j.cej.2025.171042_bb0135 article-title: Dynamic electrodeposition on bubbles: An effective strategy toward porous Electrocatalysts for green hydrogen cycling publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.3c00059 – volume: 7 start-page: 24646 issue: 28 year: 2022 ident: 10.1016/j.cej.2025.171042_bb0150 article-title: Strong metal-support interactions of Ni-CeO2 effectively improve the performance of a molten hydroxide direct carbon fuel cell publication-title: ACS Omega doi: 10.1021/acsomega.2c02479 – volume: 35 start-page: 19000 issue: 23 year: 2021 ident: 10.1016/j.cej.2025.171042_bb0165 article-title: Mini review on active sites in Ce-based Electrocatalysts for alkaline water splitting publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.1c02087 – volume: 7 issue: 7 year: 2023 ident: 10.1016/j.cej.2025.171042_bb0075 article-title: Spin-selective coupling in Mott-Schottky Er2O3-co boosts electrocatalytic oxygen reduction, small methods – volume: 15 issue: 1 year: 2024 ident: 10.1016/j.cej.2025.171042_bb0235 article-title: Fe-S dually modulated adsorbate evolution and lattice oxygen compatible mechanism for water oxidation publication-title: Nat. Commun. doi: 10.1038/s41467-024-52682-y – volume: 330 year: 2023 ident: 10.1016/j.cej.2025.171042_bb0025 article-title: Sulfide interlayered cobalt-based oxynitrides for efficient oxygen evolution reaction in neutral pH water and seawater publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2023.122599 – volume: 116 start-page: 5987 issue: 10 year: 2016 ident: 10.1016/j.cej.2025.171042_bb0080 article-title: Fundamentals and catalytic applications of CeO2-based materials publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00603 – volume: 20 issue: 8 year: 2024 ident: 10.1016/j.cej.2025.171042_bb0130 article-title: Achieving high-performance electrocatalytic water oxidation on Ni(OH)2 with optimized intermediate binding energy enabled by S-doping and CeO2 -interfacing publication-title: Small doi: 10.1002/smll.202303169 – volume: 14 start-page: 6019 issue: 1 year: 2023 ident: 10.1016/j.cej.2025.171042_bb0225 article-title: Activating lattice oxygen in high-entropy LDH for robust and durable water oxidation publication-title: Nat. Commun. doi: 10.1038/s41467-023-41706-8 – volume: 4 start-page: 329 issue: 4 year: 2019 ident: 10.1016/j.cej.2025.171042_bb0110 article-title: Chemical and structural origin of lattice oxygen oxidation in co-Zn oxyhydroxide oxygen evolution electrocatalysts publication-title: Nat. Energy doi: 10.1038/s41560-019-0355-9 – volume: 611 start-page: 702 issue: 7937 year: 2022 ident: 10.1016/j.cej.2025.171042_bb0125 article-title: Pivotal role of reversible NiO6 geometric conversion in oxygen evolution publication-title: Nature doi: 10.1038/s41586-022-05296-7 – volume: 36 issue: 41 year: 2024 ident: 10.1016/j.cej.2025.171042_bb0190 article-title: Modulating the electronic structure of Cobalt-Vanadium bimetal catalysts for high-stable anion exchange membrane water electrolyzer publication-title: Adv. Mater. doi: 10.1002/adma.202408634 – volume: 15 start-page: 1012 issue: 1 year: 2024 ident: 10.1016/j.cej.2025.171042_bb0205 article-title: Lattice oxygen activation and local electric field enhancement by co-doping Fe and F in CoO nanoneedle arrays for industrial electrocatalytic water oxidation publication-title: Nat. Commun. doi: 10.1038/s41467-024-45320-0 – volume: 121 start-page: 20834 issue: 38 year: 2017 ident: 10.1016/j.cej.2025.171042_bb0145 article-title: Raman spectra of polycrystalline CeO2: a density functional theory study publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b06643 – volume: 314 year: 2022 ident: 10.1016/j.cej.2025.171042_bb0160 article-title: Effect of cobalt doping-regulated crystallinity in nickel-iron layered double hydroxide catalyzing oxygen evolution publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2022.121491 – volume: 91 start-page: 370 year: 2024 ident: 10.1016/j.cej.2025.171042_bb0210 article-title: Electrochemical reconstruction of non-noble metal-based heterostructure nanorod arrays electrodes for highly stable anion exchange membrane seawater electrolysis publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2023.12.018 – volume: 71 year: 2020 ident: 10.1016/j.cej.2025.171042_bb0200 article-title: In-situ phase transition of WO3 boosting electron and hydrogen transfer for enhancing hydrogen evolution on Pt publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104653 – volume: 35 issue: 6 year: 2023 ident: 10.1016/j.cej.2025.171042_bb0170 article-title: Identification of the origin for reconstructed active sites on oxyhydroxide for oxygen evolution reaction – volume: 17 start-page: 5260 issue: 14 year: 2024 ident: 10.1016/j.cej.2025.171042_bb0065 article-title: Activating lattice oxygen by a defect-engineered Fe2O3-CeO2 nano-heterojunction for efficient electrochemical water oxidation publication-title: Energy Environ. Sci. doi: 10.1039/D4EE01588F – volume: 322 year: 2023 ident: 10.1016/j.cej.2025.171042_bb0010 article-title: Overall water splitting realized by overall sputtering thin-film technology for a bifunctional MoNiFe electrode: a green technology for green hydrogen publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2022.122103 – volume: 498 year: 2024 ident: 10.1016/j.cej.2025.171042_bb0055 article-title: Strong interaction heterointerface of NiFe oxyhydroxide/cerium oxide for efficient and stable water oxidation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2024.155063 – volume: 13 issue: 1 year: 2022 ident: 10.1016/j.cej.2025.171042_bb0215 article-title: Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis publication-title: Nat. Commun. – volume: 443 year: 2022 ident: 10.1016/j.cej.2025.171042_bb0175 article-title: In-situ generation of Ni-CoOOH through deep reconstruction for durable alkaline water electrolysis publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136432 – volume: 36 issue: 35 year: 2024 ident: 10.1016/j.cej.2025.171042_bb0090 article-title: Ceria-optimized oxygen-species exchange in hierarchical bimetallic hydroxide for electrocatalytic water oxidation publication-title: Adv. Mater. doi: 10.1002/adma.202406682 – volume: 13 issue: 30 year: 2023 ident: 10.1016/j.cej.2025.171042_bb0100 article-title: Ce-induced differentiated regulation of co sites via gradient orbital coupling for bifunctional water-splitting reactions publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202301162 – volume: 44 start-page: 6090 issue: 12 year: 1991 ident: 10.1016/j.cej.2025.171042_bb0115 article-title: Electronic structure of CoO, Li-doped CoO, and LiCoO2 publication-title: Phys. Rev. B Condens. Matter doi: 10.1103/PhysRevB.44.6090 – volume: 11 start-page: 6181 issue: 1 year: 2020 ident: 10.1016/j.cej.2025.171042_bb0095 article-title: Key activity descriptors of nickel-iron oxygen evolution electrocatalysts in the presence of alkali metal cations publication-title: Nat. Commun. doi: 10.1038/s41467-020-19729-2 – volume: 14 issue: 1 year: 2023 ident: 10.1016/j.cej.2025.171042_bb0045 article-title: Potential-dependent transition of reaction mechanisms for oxygen evolution on layered double hydroxides publication-title: Nat. Commun. – volume: 3 start-page: 634 issue: 2 year: 2015 ident: 10.1016/j.cej.2025.171042_bb0155 article-title: Highly defective CeO2 as a promoter for efficient and stable water oxidation publication-title: J Mater Chem A doi: 10.1039/C4TA05770H |
| SSID | ssj0006919 |
| Score | 2.4797797 |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 171042 |
| Title | Engineered TM(3d)-O(2p)-RE(4f) gradient orbital with coupled adsorption evolution and lattice oxygen mechanism towards robust oxygen evolution |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1385-8947 databaseCode: AIEXJ dateStart: 19970115 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0006919 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgc4IJ7iLR84tFSpmsR5-LhCRctjdxFEqHCJ7MSBVCWJ0rQq_Ah-Fr-Lcew4YVdI7IFLZCW2Ncp8Go_H34wRepZ6TPg2m1vETrhFRGpbIQ2ZFcBWIODUz3jLdv_4Njg9DZdL-m40-tXlwuzWQVGE-z2t_quq4R0oW6bOXkLdZlJ4AW1QOjxB7fD8J8V3FQbBk4xOwH90QQBqnUHLqWTr_QKaJJPhgC91S_hqpmXN5eUhHRF9W61hNEs3Za0sithpkduzhjVrJGVuWu6_gxTTb0JmD8vLNpqWg7uZ1iXfbpruuxk8dIRNoQLRF0Q0ZSzkNSNM0oVUuPUDiPVDZSXrCAb1BxGMY9aGez_lTbcMSyum4-Cfv0pyfGl4R_m2DQGL_ELE_A3LhyEQx9O5gL3VdkMPIKZKd2pLbIPrpOp2XVgkVLxiNUvEaianm_V9_yzIfW6hNPTFjhm3imGKWE4RqymuoEMn8ChY18OjV4vla-MT-LS9YsYI2p2vt0zDc3IMPKSBqxPdRDf0HgUfKWzdQiNR3EbXB5Ur76CfPcpwdDJ204l1NnaqCaBrTLIJ7pCFNbKwRBbWyMI9srABBwbtYo0srJCDDbKwRhZWyOq-m8F3UfRyEb04tvTVHlZCCSzBji2cwCdUuJQzV7iczMGY-AkJnMwLSEr8FP5NGthZFmaOgD134ITc5llmc54m7j10UJSFuI9wYsvurpckRJDQT5jLM8b8VAiH03TuP0DPu78ZV6qAS_xX_T28TOdH6FoPxsfooKm34gm6muyafFM_1Qj4DceGldI |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineered+TM%283d%29-O%282p%29-RE%284f%29+gradient+orbital+with+coupled+adsorption+evolution+and+lattice+oxygen+mechanism+towards+robust+oxygen+evolution&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Hao%2C+Yiting&rft.au=Yang%2C+Zhentao&rft.au=Liu%2C+Mei&rft.au=Zhang%2C+Kai&rft.date=2025-11-01&rft.issn=1385-8947&rft.spage=171042&rft_id=info:doi/10.1016%2Fj.cej.2025.171042&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2025_171042 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |