Engineered TM(3d)-O(2p)-RE(4f) gradient orbital with coupled adsorption evolution and lattice oxygen mechanism towards robust oxygen evolution

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering journal (Lausanne, Switzerland : 1996) S. 171042
Hauptverfasser: Hao, Yiting, Yang, Zhentao, Liu, Mei, Zhang, Kai, Wang, Hongyu, Saleem, Muhammad Hassaan, Liu, Guihua, Du, Xiaohang, Li, Jingde
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 01.11.2025
ISSN:1385-8947
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
ArticleNumber 171042
Author Hao, Yiting
Yang, Zhentao
Wang, Hongyu
Liu, Guihua
Li, Jingde
Du, Xiaohang
Zhang, Kai
Liu, Mei
Saleem, Muhammad Hassaan
Author_xml – sequence: 1
  givenname: Yiting
  surname: Hao
  fullname: Hao, Yiting
– sequence: 2
  givenname: Zhentao
  surname: Yang
  fullname: Yang, Zhentao
– sequence: 3
  givenname: Mei
  surname: Liu
  fullname: Liu, Mei
– sequence: 4
  givenname: Kai
  surname: Zhang
  fullname: Zhang, Kai
– sequence: 5
  givenname: Hongyu
  surname: Wang
  fullname: Wang, Hongyu
– sequence: 6
  givenname: Muhammad Hassaan
  surname: Saleem
  fullname: Saleem, Muhammad Hassaan
– sequence: 7
  givenname: Guihua
  surname: Liu
  fullname: Liu, Guihua
– sequence: 8
  givenname: Xiaohang
  surname: Du
  fullname: Du, Xiaohang
– sequence: 9
  givenname: Jingde
  surname: Li
  fullname: Li, Jingde
BookMark eNo90MluwjAUBVAvqFSg_YDuvIRFUttxpmWF6CBRIVXsIw_PkCjYkW1K-Yl-c6HT6l3p6d7FmaCRdRYQuqMkpYQW912qoEsZYXlKS0o4G6Exzao8qWpeXqNJCB0hpKhpPUafS7ttLYAHjTevs0zPk_WMDfPkbTnjZo63XugWbMTOyzaKHh_buMPKHYb-3BA6OD_E1lkM764_fCdhNe5FjK0C7D5OW7B4D2onbBv2OLqj8Dpg7-QhxL__f_kGXRnRB7j9vVO0eVxuFs_Jav30snhYJarmLKkYBVYWvIasliKDTHIiQRWKl8zkJde80GcIXVJjKsOgIHnJKkmlMVRKrbIpoj-zyrsQPJhm8O1e-FNDSXMxbLrmbNhcDJsfw-wLffNsPQ
Cites_doi 10.1038/s41467-018-04788-3
10.1002/anie.202107390
10.1103/PhysRevLett.55.418
10.1038/s41560-018-0097-0
10.1002/adfm.202112674
10.1007/s40820-022-00857-x
10.1016/j.apcatb.2020.119738
10.1021/acs.chemrev.1c00644
10.1021/jacs.3c13746
10.1038/s41467-021-24182-w
10.1038/s41929-021-00656-4
10.1002/adfm.202305243
10.1021/acs.chemrev.2c00573
10.1002/aenm.202101281
10.1002/adma.202206540
10.1021/acsenergylett.1c00608
10.1021/acs.accounts.3c00059
10.1021/acsomega.2c02479
10.1021/acs.energyfuels.1c02087
10.1038/s41467-024-52682-y
10.1016/j.apcatb.2023.122599
10.1021/acs.chemrev.5b00603
10.1002/smll.202303169
10.1038/s41467-023-41706-8
10.1038/s41560-019-0355-9
10.1038/s41586-022-05296-7
10.1002/adma.202408634
10.1038/s41467-024-45320-0
10.1021/acs.jpcc.7b06643
10.1016/j.apcatb.2022.121491
10.1016/j.jechem.2023.12.018
10.1016/j.nanoen.2020.104653
10.1039/D4EE01588F
10.1016/j.apcatb.2022.122103
10.1016/j.cej.2024.155063
10.1016/j.cej.2022.136432
10.1002/adma.202406682
10.1002/aenm.202301162
10.1103/PhysRevB.44.6090
10.1038/s41467-020-19729-2
10.1039/C4TA05770H
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2025.171042
DatabaseName CrossRef
DatabaseTitle CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_cej_2025_171042
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9DU
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ACDAQ
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLECG
BLXMC
CITATION
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSJ
SSZ
T5K
ZY4
~G-
~HD
ID FETCH-LOGICAL-c942-821e27649e39ba3e3b40bec6c472f574d46d016d71ff8f2e605728b1bff1bbdc3
ISSN 1385-8947
IngestDate Thu Nov 27 00:55:01 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c942-821e27649e39ba3e3b40bec6c472f574d46d016d71ff8f2e605728b1bff1bbdc3
ParticipantIDs crossref_primary_10_1016_j_cej_2025_171042
PublicationCentury 2000
PublicationDate 2025-11-00
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-00
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2025
References Zaanen (10.1016/j.cej.2025.171042_bb0120) 1985; 55
Li (10.1016/j.cej.2025.171042_bb0030) 2022; 14
Gu (10.1016/j.cej.2025.171042_bb0195) 2021; 60
Wang (10.1016/j.cej.2025.171042_bb0070) 2022; 34
van Elp (10.1016/j.cej.2025.171042_bb0115) 1991; 44
Zhang (10.1016/j.cej.2025.171042_bb0020) 2021; 284
Liu (10.1016/j.cej.2025.171042_bb0180) 2021; 11
Wang (10.1016/j.cej.2025.171042_bb0035) 2022; 34
Li (10.1016/j.cej.2025.171042_bb0150) 2022; 7
Chen (10.1016/j.cej.2025.171042_bb0175) 2022; 443
He (10.1016/j.cej.2025.171042_bb0215) 2022; 13
Huang (10.1016/j.cej.2025.171042_bb0065) 2024; 17
Gorlin (10.1016/j.cej.2025.171042_bb0095) 2020; 11
Assat (10.1016/j.cej.2025.171042_bb0105) 2018; 3
Wang (10.1016/j.cej.2025.171042_bb0060) 2024; 64
Wang (10.1016/j.cej.2025.171042_bb0125) 2022; 611
Montini (10.1016/j.cej.2025.171042_bb0080) 2016; 116
Zheng (10.1016/j.cej.2025.171042_bb0085) 2022; 122
Hwang (10.1016/j.cej.2025.171042_bb0240) 2021; 4
Liang (10.1016/j.cej.2025.171042_bb0190) 2024; 36
Chen (10.1016/j.cej.2025.171042_bb0130) 2024; 20
Schilling (10.1016/j.cej.2025.171042_bb0145) 2017; 121
Xie (10.1016/j.cej.2025.171042_bb0200) 2020; 71
Huang (10.1016/j.cej.2025.171042_bb0220) 2021; 12
Yin (10.1016/j.cej.2025.171042_bb0050) 2024; 146
Xin (10.1016/j.cej.2025.171042_bb0040) 2023; 33
Yang (10.1016/j.cej.2025.171042_bb0160) 2022; 314
Wang (10.1016/j.cej.2025.171042_bb0045) 2023; 14
Gultom (10.1016/j.cej.2025.171042_bb0010) 2023; 322
Wang (10.1016/j.cej.2025.171042_bb0075) 2023; 7
Jiang (10.1016/j.cej.2025.171042_bb0135) 2023; 56
Wang (10.1016/j.cej.2025.171042_bb0225) 2023; 14
Chen (10.1016/j.cej.2025.171042_bb0230) 2022; 32
Zeng (10.1016/j.cej.2025.171042_bb0015) 2022; 12
Jiao (10.1016/j.cej.2025.171042_bb0055) 2024; 498
Li (10.1016/j.cej.2025.171042_bb0100) 2023; 13
Ye (10.1016/j.cej.2025.171042_bb0205) 2024; 15
Zhang (10.1016/j.cej.2025.171042_bb0005) 2023; 123
Guo (10.1016/j.cej.2025.171042_bb0090) 2024; 36
Wang (10.1016/j.cej.2025.171042_bb0170) 2023; 35
Anantharaj (10.1016/j.cej.2025.171042_bb0185) 2021
Badreldin (10.1016/j.cej.2025.171042_bb0025) 2023; 330
Yan (10.1016/j.cej.2025.171042_bb0140) 2018; 9
Yu (10.1016/j.cej.2025.171042_bb0165) 2021; 35
Liang (10.1016/j.cej.2025.171042_bb0155) 2015; 3
Huang (10.1016/j.cej.2025.171042_bb0110) 2019; 4
Luo (10.1016/j.cej.2025.171042_bb0235) 2024; 15
Na (10.1016/j.cej.2025.171042_bb0210) 2024; 91
References_xml – volume: 9
  start-page: 2373
  issue: 1
  year: 2018
  ident: 10.1016/j.cej.2025.171042_bb0140
  article-title: Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04788-3
– volume: 60
  start-page: 20253
  issue: 37
  year: 2021
  ident: 10.1016/j.cej.2025.171042_bb0195
  article-title: Defect-rich high-entropy oxide nanosheets for efficient 5-hydroxymethylfurfural electrooxidation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202107390
– volume: 55
  start-page: 418
  issue: 4
  year: 1985
  ident: 10.1016/j.cej.2025.171042_bb0120
  article-title: Band gaps and electronic structure of transition-metal compounds
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.55.418
– volume: 3
  start-page: 373
  issue: 5
  year: 2018
  ident: 10.1016/j.cej.2025.171042_bb0105
  article-title: Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0097-0
– volume: 34
  issue: 50
  year: 2022
  ident: 10.1016/j.cej.2025.171042_bb0035
  article-title: Understanding of oxygen redox in the oxygen evolution reaction
– volume: 32
  issue: 26
  year: 2022
  ident: 10.1016/j.cej.2025.171042_bb0230
  article-title: S-doping triggers redox Reactivities of both Iron and lattice oxygen in FeOOH for low-cost and high-performance water oxidation
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202112674
– volume: 14
  start-page: 112
  issue: 1
  year: 2022
  ident: 10.1016/j.cej.2025.171042_bb0030
  article-title: Oxygen evolution reaction in energy conversion and storage: design strategies under and beyond the energy scaling relationship
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-022-00857-x
– volume: 284
  year: 2021
  ident: 10.1016/j.cej.2025.171042_bb0020
  article-title: Nitrogen-doped carbon wrapped co-Mo2C dual Mott-Schottky nanosheets with large porosity for efficient water electrolysis
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2020.119738
– volume: 122
  start-page: 5519
  issue: 6
  year: 2022
  ident: 10.1016/j.cej.2025.171042_bb0085
  article-title: Rare-earth doping in nanostructured inorganic materials
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00644
– volume: 146
  start-page: 6846
  issue: 10
  year: 2024
  ident: 10.1016/j.cej.2025.171042_bb0050
  article-title: Ir single atoms boost metal-oxygen Covalency on selenide-derived NiOOH for direct intramolecular oxygen coupling
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c13746
– volume: 12
  start-page: 3992
  issue: 1
  year: 2021
  ident: 10.1016/j.cej.2025.171042_bb0220
  article-title: Tuning of lattice oxygen reactivity and scaling relation to construct better oxygen evolution electrocatalyst
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24182-w
– volume: 4
  start-page: 663
  issue: 8
  year: 2021
  ident: 10.1016/j.cej.2025.171042_bb0240
  article-title: Regulating oxygen activity of perovskites to promote NOx oxidation and reduction kinetics
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-021-00656-4
– volume: 33
  issue: 45
  year: 2023
  ident: 10.1016/j.cej.2025.171042_bb0040
  article-title: Coupling adsorbed evolution and lattice oxygen mechanism in Fe-co(OH)2/Fe2O3 heterostructure for enhanced electrochemical water oxidation
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202305243
– volume: 123
  start-page: 7119
  issue: 11
  year: 2023
  ident: 10.1016/j.cej.2025.171042_bb0005
  article-title: Water electrolysis toward elevated temperature: advances, challenges and frontiers
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.2c00573
– volume: 11
  issue: 33
  year: 2021
  ident: 10.1016/j.cej.2025.171042_bb0180
  article-title: Interfacing or doping? Role of Ce in highly promoted water oxidation of NiFe-layered double hydroxide
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202101281
– volume: 12
  issue: 33
  year: 2022
  ident: 10.1016/j.cej.2025.171042_bb0015
  article-title: Surface reconstruction of water splitting electrocatalysts
  publication-title: Adv. Energy Mater.
– volume: 34
  issue: 42
  year: 2022
  ident: 10.1016/j.cej.2025.171042_bb0070
  article-title: Engineering 3d-2p-4f gradient orbital coupling to enhance Electrocatalytic oxygen reduction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202206540
– volume: 64
  issue: 3
  year: 2024
  ident: 10.1016/j.cej.2025.171042_bb0060
  article-title: Importing atomic rare-earth sites to activate lattice oxygen of spinel oxides for electrocatalytic oxygen evolution
  publication-title: Angew. Chem. Int. Ed.
– start-page: 1607
  year: 2021
  ident: 10.1016/j.cej.2025.171042_bb0185
  article-title: The pitfalls of using Potentiodynamic polarization curves for Tafel analysis in Electrocatalytic water splitting
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c00608
– volume: 56
  start-page: 1421
  issue: 12
  year: 2023
  ident: 10.1016/j.cej.2025.171042_bb0135
  article-title: Dynamic electrodeposition on bubbles: An effective strategy toward porous Electrocatalysts for green hydrogen cycling
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.3c00059
– volume: 7
  start-page: 24646
  issue: 28
  year: 2022
  ident: 10.1016/j.cej.2025.171042_bb0150
  article-title: Strong metal-support interactions of Ni-CeO2 effectively improve the performance of a molten hydroxide direct carbon fuel cell
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c02479
– volume: 35
  start-page: 19000
  issue: 23
  year: 2021
  ident: 10.1016/j.cej.2025.171042_bb0165
  article-title: Mini review on active sites in Ce-based Electrocatalysts for alkaline water splitting
  publication-title: Energy Fuel
  doi: 10.1021/acs.energyfuels.1c02087
– volume: 7
  issue: 7
  year: 2023
  ident: 10.1016/j.cej.2025.171042_bb0075
  article-title: Spin-selective coupling in Mott-Schottky Er2O3-co boosts electrocatalytic oxygen reduction, small methods
– volume: 15
  issue: 1
  year: 2024
  ident: 10.1016/j.cej.2025.171042_bb0235
  article-title: Fe-S dually modulated adsorbate evolution and lattice oxygen compatible mechanism for water oxidation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-52682-y
– volume: 330
  year: 2023
  ident: 10.1016/j.cej.2025.171042_bb0025
  article-title: Sulfide interlayered cobalt-based oxynitrides for efficient oxygen evolution reaction in neutral pH water and seawater
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2023.122599
– volume: 116
  start-page: 5987
  issue: 10
  year: 2016
  ident: 10.1016/j.cej.2025.171042_bb0080
  article-title: Fundamentals and catalytic applications of CeO2-based materials
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00603
– volume: 20
  issue: 8
  year: 2024
  ident: 10.1016/j.cej.2025.171042_bb0130
  article-title: Achieving high-performance electrocatalytic water oxidation on Ni(OH)2 with optimized intermediate binding energy enabled by S-doping and CeO2 -interfacing
  publication-title: Small
  doi: 10.1002/smll.202303169
– volume: 14
  start-page: 6019
  issue: 1
  year: 2023
  ident: 10.1016/j.cej.2025.171042_bb0225
  article-title: Activating lattice oxygen in high-entropy LDH for robust and durable water oxidation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-41706-8
– volume: 4
  start-page: 329
  issue: 4
  year: 2019
  ident: 10.1016/j.cej.2025.171042_bb0110
  article-title: Chemical and structural origin of lattice oxygen oxidation in co-Zn oxyhydroxide oxygen evolution electrocatalysts
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0355-9
– volume: 611
  start-page: 702
  issue: 7937
  year: 2022
  ident: 10.1016/j.cej.2025.171042_bb0125
  article-title: Pivotal role of reversible NiO6 geometric conversion in oxygen evolution
  publication-title: Nature
  doi: 10.1038/s41586-022-05296-7
– volume: 36
  issue: 41
  year: 2024
  ident: 10.1016/j.cej.2025.171042_bb0190
  article-title: Modulating the electronic structure of Cobalt-Vanadium bimetal catalysts for high-stable anion exchange membrane water electrolyzer
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202408634
– volume: 15
  start-page: 1012
  issue: 1
  year: 2024
  ident: 10.1016/j.cej.2025.171042_bb0205
  article-title: Lattice oxygen activation and local electric field enhancement by co-doping Fe and F in CoO nanoneedle arrays for industrial electrocatalytic water oxidation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-45320-0
– volume: 121
  start-page: 20834
  issue: 38
  year: 2017
  ident: 10.1016/j.cej.2025.171042_bb0145
  article-title: Raman spectra of polycrystalline CeO2: a density functional theory study
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b06643
– volume: 314
  year: 2022
  ident: 10.1016/j.cej.2025.171042_bb0160
  article-title: Effect of cobalt doping-regulated crystallinity in nickel-iron layered double hydroxide catalyzing oxygen evolution
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2022.121491
– volume: 91
  start-page: 370
  year: 2024
  ident: 10.1016/j.cej.2025.171042_bb0210
  article-title: Electrochemical reconstruction of non-noble metal-based heterostructure nanorod arrays electrodes for highly stable anion exchange membrane seawater electrolysis
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2023.12.018
– volume: 71
  year: 2020
  ident: 10.1016/j.cej.2025.171042_bb0200
  article-title: In-situ phase transition of WO3 boosting electron and hydrogen transfer for enhancing hydrogen evolution on Pt
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104653
– volume: 35
  issue: 6
  year: 2023
  ident: 10.1016/j.cej.2025.171042_bb0170
  article-title: Identification of the origin for reconstructed active sites on oxyhydroxide for oxygen evolution reaction
– volume: 17
  start-page: 5260
  issue: 14
  year: 2024
  ident: 10.1016/j.cej.2025.171042_bb0065
  article-title: Activating lattice oxygen by a defect-engineered Fe2O3-CeO2 nano-heterojunction for efficient electrochemical water oxidation
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D4EE01588F
– volume: 322
  year: 2023
  ident: 10.1016/j.cej.2025.171042_bb0010
  article-title: Overall water splitting realized by overall sputtering thin-film technology for a bifunctional MoNiFe electrode: a green technology for green hydrogen
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2022.122103
– volume: 498
  year: 2024
  ident: 10.1016/j.cej.2025.171042_bb0055
  article-title: Strong interaction heterointerface of NiFe oxyhydroxide/cerium oxide for efficient and stable water oxidation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2024.155063
– volume: 13
  issue: 1
  year: 2022
  ident: 10.1016/j.cej.2025.171042_bb0215
  article-title: Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis
  publication-title: Nat. Commun.
– volume: 443
  year: 2022
  ident: 10.1016/j.cej.2025.171042_bb0175
  article-title: In-situ generation of Ni-CoOOH through deep reconstruction for durable alkaline water electrolysis
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136432
– volume: 36
  issue: 35
  year: 2024
  ident: 10.1016/j.cej.2025.171042_bb0090
  article-title: Ceria-optimized oxygen-species exchange in hierarchical bimetallic hydroxide for electrocatalytic water oxidation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202406682
– volume: 13
  issue: 30
  year: 2023
  ident: 10.1016/j.cej.2025.171042_bb0100
  article-title: Ce-induced differentiated regulation of co sites via gradient orbital coupling for bifunctional water-splitting reactions
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202301162
– volume: 44
  start-page: 6090
  issue: 12
  year: 1991
  ident: 10.1016/j.cej.2025.171042_bb0115
  article-title: Electronic structure of CoO, Li-doped CoO, and LiCoO2
  publication-title: Phys. Rev. B Condens. Matter
  doi: 10.1103/PhysRevB.44.6090
– volume: 11
  start-page: 6181
  issue: 1
  year: 2020
  ident: 10.1016/j.cej.2025.171042_bb0095
  article-title: Key activity descriptors of nickel-iron oxygen evolution electrocatalysts in the presence of alkali metal cations
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19729-2
– volume: 14
  issue: 1
  year: 2023
  ident: 10.1016/j.cej.2025.171042_bb0045
  article-title: Potential-dependent transition of reaction mechanisms for oxygen evolution on layered double hydroxides
  publication-title: Nat. Commun.
– volume: 3
  start-page: 634
  issue: 2
  year: 2015
  ident: 10.1016/j.cej.2025.171042_bb0155
  article-title: Highly defective CeO2 as a promoter for efficient and stable water oxidation
  publication-title: J Mater Chem A
  doi: 10.1039/C4TA05770H
SSID ssj0006919
Score 2.4797797
SourceID crossref
SourceType Index Database
StartPage 171042
Title Engineered TM(3d)-O(2p)-RE(4f) gradient orbital with coupled adsorption evolution and lattice oxygen mechanism towards robust oxygen evolution
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1385-8947
  databaseCode: AIEXJ
  dateStart: 19970115
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006919
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgc4IJ7iLR84tFSpmsR5-LhCRctjdxFEqHCJ7MSBVCWJ0rQq_Ah-Fr-Lcew4YVdI7IFLZCW2Ncp8Go_H34wRepZ6TPg2m1vETrhFRGpbIQ2ZFcBWIODUz3jLdv_4Njg9DZdL-m40-tXlwuzWQVGE-z2t_quq4R0oW6bOXkLdZlJ4AW1QOjxB7fD8J8V3FQbBk4xOwH90QQBqnUHLqWTr_QKaJJPhgC91S_hqpmXN5eUhHRF9W61hNEs3Za0sithpkduzhjVrJGVuWu6_gxTTb0JmD8vLNpqWg7uZ1iXfbpruuxk8dIRNoQLRF0Q0ZSzkNSNM0oVUuPUDiPVDZSXrCAb1BxGMY9aGez_lTbcMSyum4-Cfv0pyfGl4R_m2DQGL_ELE_A3LhyEQx9O5gL3VdkMPIKZKd2pLbIPrpOp2XVgkVLxiNUvEaianm_V9_yzIfW6hNPTFjhm3imGKWE4RqymuoEMn8ChY18OjV4vla-MT-LS9YsYI2p2vt0zDc3IMPKSBqxPdRDf0HgUfKWzdQiNR3EbXB5Ur76CfPcpwdDJ204l1NnaqCaBrTLIJ7pCFNbKwRBbWyMI9srABBwbtYo0srJCDDbKwRhZWyOq-m8F3UfRyEb04tvTVHlZCCSzBji2cwCdUuJQzV7iczMGY-AkJnMwLSEr8FP5NGthZFmaOgD134ITc5llmc54m7j10UJSFuI9wYsvurpckRJDQT5jLM8b8VAiH03TuP0DPu78ZV6qAS_xX_T28TOdH6FoPxsfooKm34gm6muyafFM_1Qj4DceGldI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineered+TM%283d%29-O%282p%29-RE%284f%29+gradient+orbital+with+coupled+adsorption+evolution+and+lattice+oxygen+mechanism+towards+robust+oxygen+evolution&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Hao%2C+Yiting&rft.au=Yang%2C+Zhentao&rft.au=Liu%2C+Mei&rft.au=Zhang%2C+Kai&rft.date=2025-11-01&rft.issn=1385-8947&rft.spage=171042&rft_id=info:doi/10.1016%2Fj.cej.2025.171042&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2025_171042
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon