Design and optimization of a compact rectangular galfenol-based magnetostrictive energy harvester

Electromagnetic vibration energy harvesters are widely explored as low-cost and robust solutions for powering wireless and low-power electronics. Based on Faraday’s law, energy generation relies on the modification of the magnetic field distribution within a magnetic element caused by mechanical vib...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors and actuators. A. Physical. Ročník 396; s. 117231
Hlavní autoři: Gandia, David, Gómez-Hurtado, Jorge, Beato-López, J.J., Garaio, Eneko, Royo-Silvestre, Isaac, Vargas-Silva, Gustavo, Gómez-Polo, Cristina
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 16.12.2025
Témata:
ISSN:0924-4247
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Electromagnetic vibration energy harvesters are widely explored as low-cost and robust solutions for powering wireless and low-power electronics. Based on Faraday’s law, energy generation relies on the modification of the magnetic field distribution within a magnetic element caused by mechanical vibrations inducing an electromotive force (EMF) in a pick-up coil. Within cantilever-based approaches, most harvesters employ rectangular, U-shaped or V-Shaped beams coupled with active materials, coils and permanent magnets, with varying levels of complexity and efficiency. In this work, we present a magnetostrictive harvester based on a rectangular iron cantilever with a bonded Galfenol layer and two cubic magnets, to collect the energy of one dimensional vibrations, optimized through Finite Element simulations and experimental testing. Finite Element Method (FEM) is used to explain the harvester behavior. Magnetic modeling enabled accurate estimation of the H-field inside the Galfenol, guiding the system toward the optimal bias field (∼8 kA/m), while mechanical simulations provided insight into internal stress distribution. This dual modeling strategy not only supported the experimental results but also can be used to design efficient magnetostrictive harvesters for real-world applications. Thanks to the to the refinement process, the resulting design, despite its simplicity, delivers a peak power density of 2.12 mW/cm³ at 40 Hz resonance, demonstrating performance comparable to that of significantly more complex magnetostrictive harvesters. [Display omitted] •FEM guides bias field and stress optimization in a Galfenol harvester.•Simple rectangular design achieves 2.12 mW/cm³ at 40 Hz resonance.•Dual FEM modeling matches experimental voltage and stress results.•Accurate bias field estimation is key to maximizing output.•Compact 0.76 cm³ harvester is suitable for IoT and sensor integration.
AbstractList Electromagnetic vibration energy harvesters are widely explored as low-cost and robust solutions for powering wireless and low-power electronics. Based on Faraday’s law, energy generation relies on the modification of the magnetic field distribution within a magnetic element caused by mechanical vibrations inducing an electromotive force (EMF) in a pick-up coil. Within cantilever-based approaches, most harvesters employ rectangular, U-shaped or V-Shaped beams coupled with active materials, coils and permanent magnets, with varying levels of complexity and efficiency. In this work, we present a magnetostrictive harvester based on a rectangular iron cantilever with a bonded Galfenol layer and two cubic magnets, to collect the energy of one dimensional vibrations, optimized through Finite Element simulations and experimental testing. Finite Element Method (FEM) is used to explain the harvester behavior. Magnetic modeling enabled accurate estimation of the H-field inside the Galfenol, guiding the system toward the optimal bias field (∼8 kA/m), while mechanical simulations provided insight into internal stress distribution. This dual modeling strategy not only supported the experimental results but also can be used to design efficient magnetostrictive harvesters for real-world applications. Thanks to the to the refinement process, the resulting design, despite its simplicity, delivers a peak power density of 2.12 mW/cm³ at 40 Hz resonance, demonstrating performance comparable to that of significantly more complex magnetostrictive harvesters. [Display omitted] •FEM guides bias field and stress optimization in a Galfenol harvester.•Simple rectangular design achieves 2.12 mW/cm³ at 40 Hz resonance.•Dual FEM modeling matches experimental voltage and stress results.•Accurate bias field estimation is key to maximizing output.•Compact 0.76 cm³ harvester is suitable for IoT and sensor integration.
ArticleNumber 117231
Author Gandia, David
Gómez-Polo, Cristina
Royo-Silvestre, Isaac
Vargas-Silva, Gustavo
Gómez-Hurtado, Jorge
Garaio, Eneko
Beato-López, J.J.
Author_xml – sequence: 1
  givenname: David
  orcidid: 0000-0003-2203-6752
  surname: Gandia
  fullname: Gandia, David
  email: david.gandia@unavarra.es
  organization: Departamento de Ciencias, Universidad Pública de Navarra, UPNA, Pamplona, Spain
– sequence: 2
  givenname: Jorge
  orcidid: 0009-0009-0110-4999
  surname: Gómez-Hurtado
  fullname: Gómez-Hurtado, Jorge
  organization: Departamento de Ciencias, Universidad Pública de Navarra, UPNA, Pamplona, Spain
– sequence: 3
  givenname: J.J.
  orcidid: 0000-0002-9339-3557
  surname: Beato-López
  fullname: Beato-López, J.J.
  organization: Departamento de Ciencias, Universidad Pública de Navarra, UPNA, Pamplona, Spain
– sequence: 4
  givenname: Eneko
  orcidid: 0000-0002-3144-7898
  surname: Garaio
  fullname: Garaio, Eneko
  organization: Departamento de Ciencias, Universidad Pública de Navarra, UPNA, Pamplona, Spain
– sequence: 5
  givenname: Isaac
  orcidid: 0000-0002-5663-8631
  surname: Royo-Silvestre
  fullname: Royo-Silvestre, Isaac
  organization: Departamento de Ciencias, Universidad Pública de Navarra, UPNA, Pamplona, Spain
– sequence: 6
  givenname: Gustavo
  orcidid: 0000-0002-2472-9440
  surname: Vargas-Silva
  fullname: Vargas-Silva, Gustavo
  organization: Institute for Advanced Materials and Mathematics INAMAT2, Universidad Pública de Navarra, UPNA, Pamplona, Spain
– sequence: 7
  givenname: Cristina
  surname: Gómez-Polo
  fullname: Gómez-Polo, Cristina
  organization: Departamento de Ciencias, Universidad Pública de Navarra, UPNA, Pamplona, Spain
BookMark eNp9kL1OwzAUhT0UiRZ4ADa_QILtpHEsJlR-pUos3a0b-ya4SuzKNpXK05OqzExn-o7O-VZk4YNHQu45KznjzcO-TB5KwcS65FyKii_IkilRF7Wo5TVZpbRnjFWVlEsCz5jc4Cl4S8Mhu8n9QHbB09BToCZMBzCZRjQZ_PA9QqQDjD36MBYdJLR0gsFjDilHZ7I7IkWPcTjRL4hHTBnjLbnqYUx495c3ZPf6stu8F9vPt4_N07YwquYFNrJB2XEA6JhhVVc11gJrW7lW0EIvlQElxPxHCo7KtKJbd5y1VphagFTVDeGXWhNDShF7fYhugnjSnOmzFr3XsxZ91qIvWmbm8cLgvOvoMOpkHHqD1p0faxvcP_QvS-NwqQ
Cites_doi 10.1109/TMAG.2007.906150
10.1016/0045-7949(94)00611-6
10.1088/1361-665X/ab36e4
10.3390/ma12193199
10.3390/s19122660
10.1088/0964-1726/24/12/125019
10.1002/er.6253
10.1088/1361-665X/aa8347
10.1177/1045389X14546651
10.1109/JSAC.2015.2391531
10.1088/0964-1726/17/4/045009
10.1016/j.enconman.2023.117411
10.1177/0954406214545821
10.1063/1.4917464
10.1093/ce/zkac023
10.1016/j.jmatprotec.2008.02.061
10.1016/j.compstruct.2022.115204
10.3390/app14199070
10.1016/j.sna.2012.12.013
10.1007/s00542-015-2583-7
10.1021/acs.nanolett.0c00526
10.1109/LSENS.2024.3387272
10.1016/j.sna.2023.114577
10.1016/j.sna.2024.115017
10.3390/s22155555
10.1016/j.enconman.2021.115146
10.1016/j.sna.2023.114303
10.1063/1.3357403
10.1177/1045389X12436729
10.1016/j.jmmm.2015.08.074
10.3390/ecsa-11-20405
10.3390/s22114144
10.1016/j.cej.2023.145297
10.1016/j.ymssp.2021.108038
10.1109/TMAG.2011.2158303
10.1016/j.sna.2025.116522
10.1109/TMAG.2019.2891118
10.1016/j.enconman.2016.04.012
10.1177/1045389X16666176
10.3390/machines10100848
10.1016/j.apenergy.2019.114191
10.1002/bit.25279
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.sna.2025.117231
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_sna_2025_117231
S0924424725010374
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AATTM
AAXKI
AAXUO
AAYWO
ABMAC
ABNEU
ACDAQ
ACFVG
ACGFS
ACIWK
ACLOT
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AFJKZ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIIUN
AIKHN
AITUG
AIVDX
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSK
SSQ
SST
SSZ
T5K
TN5
YK3
~G-
~HD
9DU
AAQXK
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AGQPQ
AJQLL
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HMU
HVGLF
HZ~
R2-
SCB
SCH
SET
WUQ
ID FETCH-LOGICAL-c941-e676e7b1aaab0c03b36dda088759a8af79ca922117721e9c82b5b108d2c42a793
ISSN 0924-4247
IngestDate Thu Nov 27 01:01:09 EST 2025
Sat Nov 29 17:01:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Resonator
Finite element modelling
Magnetostriction
Energy harvesting
Actuator
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c941-e676e7b1aaab0c03b36dda088759a8af79ca922117721e9c82b5b108d2c42a793
ORCID 0000-0003-2203-6752
0000-0002-2472-9440
0000-0002-3144-7898
0009-0009-0110-4999
0000-0002-9339-3557
0000-0002-5663-8631
OpenAccessLink https://dx.doi.org/10.1016/j.sna.2025.117231
ParticipantIDs crossref_primary_10_1016_j_sna_2025_117231
elsevier_sciencedirect_doi_10_1016_j_sna_2025_117231
PublicationCentury 2000
PublicationDate 2025-12-16
PublicationDateYYYYMMDD 2025-12-16
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-16
  day: 16
PublicationDecade 2020
PublicationTitle Sensors and actuators. A. Physical.
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Castellanos-Aldave, Cruz-Blas, Carlosena (bib53) 2024
Cao, Huang (bib2) 2022; 285
Berbyuk (bib30) Apr. 2013; 8688
Upadrashta, Yang, Tang (bib3) 2015; 26
Yue, Du (bib18) 2023; 70
Filippov (bib27) Jul. 2025; 388
Maka, Alabid (bib5) 2022; 6
Gandia (bib41) 2024; 24
Ueno (bib35) 2015; 117
Ahmad, Khan (bib17) 2021; 45
Wang (bib15) Feb. 2022; 253
Deng, Dapino (bib31) Sep. 2016; 28
Bjurström, Rusu, Johansson (bib38) 2024; 14

Clemente, Davino (bib40) 2019; 12
Deng, Dapino (bib6) 2017; 26
Zhang, Zhang, Pan, Salman, Yuan, Liu (bib23) Jun. 2016; 118
Haiping, Chunfeng, Jianghua (bib43) 2009; 209
Zhang, Fu, Zhang, Cheng, Huang (bib16) 2014; 111
Balcı, Sakar, Dalcalı (bib4) 2022; 13
Scheidler, Dapino (bib32) Jan. 2016; 397
Liu, Liu, Zhao, Li, Yu (bib48) 2022; 10
Liu, Wang, Zhang, Wang (bib50) Aug. 2014; 229
Li (bib36) 2023; 293
.
Rodrigues-Marinho (bib19) 2023; 473
Adly, Davlno, Glustlnlanl, Visone (bib51) 2010; 107
Liu, Gorman (bib45) 1995; 57
Yeatman, Mitcheson, Holmes (bib49) 2007
Liu, Daniel, Sebald, Lallart, Makihara, Ducharne (bib26) Feb. 2024; 366
Wei, Liu, Shu, Zhao, Liu, Chang (bib9) Oct. 2023; 361
Deng, Dapino (bib42) 2015; 24
Arnold (bib24) 2007; 43
Zucca, Bottauscio, Beatrice, Hadadian, Fiorillo, Martino (bib34) 2014; 50
Muscat, Bhattacharya, Zhu (bib11) 2022; 22
Liu (bib12) 2020; 20
Li (bib25) Jun. 2023; 355
Ulukus (bib1) 2015; 33
Ueno, Yamada (bib33) 2011; 47
Khalid, Redhewal, Kumar, Srivastav (bib47) 2015; 06
Dunbar, Popović (bib8) 2014; 1
Zhang, Zhang, Fu, Li, Chen, Cheng (bib28) Oct. 2013; 200
Safaei, Sodano, Anton (bib13) 2019; 28
Backman, Lawton, Morley (bib20) 2019; 55
TdVib LLC
La Rosa, Livreri, Trigona, Di Donato, Sorbello (bib22) 2019; 19
Ueno (bib39) 2018; 1052
Yoo, Flatau (bib52) Feb. 2012; 23
T. Toluwaloju and C.K. Thein, “Enhancing voltage and power output through the structural optimization of coil–magnet transducers in electromagnetic vibration energy harvesters,” p. 105, 2025
Wu, Li, Fan, Ji, Qiu (bib21) Jan. 2022; 162
Hosseini, Hamedi (bib46) 2016; 22
Carneiro (bib14) 2020; 260
Wang, Yuan (bib29) 2008; 17
Ibrahim (bib7) 2022; 22
Slabov, Kopyl, Soares dos Santos, Kholkin (bib10) 2020; 12
Arnold (10.1016/j.sna.2025.117231_bib24) 2007; 43
Zucca (10.1016/j.sna.2025.117231_bib34) 2014; 50
Berbyuk (10.1016/j.sna.2025.117231_bib30) 2013; 8688
Muscat (10.1016/j.sna.2025.117231_bib11) 2022; 22
Wei (10.1016/j.sna.2025.117231_bib9) 2023; 361
Rodrigues-Marinho (10.1016/j.sna.2025.117231_bib19) 2023; 473
10.1016/j.sna.2025.117231_bib37
Balcı (10.1016/j.sna.2025.117231_bib4) 2022; 13
Zhang (10.1016/j.sna.2025.117231_bib28) 2013; 200
Wang (10.1016/j.sna.2025.117231_bib29) 2008; 17
Adly (10.1016/j.sna.2025.117231_bib51) 2010; 107
Cao (10.1016/j.sna.2025.117231_bib2) 2022; 285
Deng (10.1016/j.sna.2025.117231_bib6) 2017; 26
Filippov (10.1016/j.sna.2025.117231_bib27) 2025; 388
Ibrahim (10.1016/j.sna.2025.117231_bib7) 2022; 22
Zhang (10.1016/j.sna.2025.117231_bib16) 2014; 111
Liu (10.1016/j.sna.2025.117231_bib45) 1995; 57
Liu (10.1016/j.sna.2025.117231_bib50) 2014; 229
Yoo (10.1016/j.sna.2025.117231_bib52) 2012; 23
Dunbar (10.1016/j.sna.2025.117231_bib8) 2014; 1
Hosseini (10.1016/j.sna.2025.117231_bib46) 2016; 22
Backman (10.1016/j.sna.2025.117231_bib20) 2019; 55
Zhang (10.1016/j.sna.2025.117231_bib23) 2016; 118
10.1016/j.sna.2025.117231_bib44
Gandia (10.1016/j.sna.2025.117231_bib41) 2024; 24
Li (10.1016/j.sna.2025.117231_bib25) 2023; 355
Upadrashta (10.1016/j.sna.2025.117231_bib3) 2015; 26
Deng (10.1016/j.sna.2025.117231_bib42) 2015; 24
Scheidler (10.1016/j.sna.2025.117231_bib32) 2016; 397
Ahmad (10.1016/j.sna.2025.117231_bib17) 2021; 45
Yue (10.1016/j.sna.2025.117231_bib18) 2023; 70
Wu (10.1016/j.sna.2025.117231_bib21) 2022; 162
Liu (10.1016/j.sna.2025.117231_bib48) 2022; 10
Liu (10.1016/j.sna.2025.117231_bib26) 2024; 366
Maka (10.1016/j.sna.2025.117231_bib5) 2022; 6
Ueno (10.1016/j.sna.2025.117231_bib35) 2015; 117
Liu (10.1016/j.sna.2025.117231_bib12) 2020; 20
Castellanos-Aldave (10.1016/j.sna.2025.117231_bib53) 2024
Bjurström (10.1016/j.sna.2025.117231_bib38) 2024; 14
Carneiro (10.1016/j.sna.2025.117231_bib14) 2020; 260
Slabov (10.1016/j.sna.2025.117231_bib10) 2020; 12
Clemente (10.1016/j.sna.2025.117231_bib40) 2019; 12
Wang (10.1016/j.sna.2025.117231_bib15) 2022; 253
Deng (10.1016/j.sna.2025.117231_bib31) 2016; 28
Ueno (10.1016/j.sna.2025.117231_bib33) 2011; 47
Ulukus (10.1016/j.sna.2025.117231_bib1) 2015; 33
Haiping (10.1016/j.sna.2025.117231_bib43) 2009; 209
Ueno (10.1016/j.sna.2025.117231_bib39) 2018; 1052
Li (10.1016/j.sna.2025.117231_bib36) 2023; 293
Yeatman (10.1016/j.sna.2025.117231_bib49) 2007
Safaei (10.1016/j.sna.2025.117231_bib13) 2019; 28
La Rosa (10.1016/j.sna.2025.117231_bib22) 2019; 19
Khalid (10.1016/j.sna.2025.117231_bib47) 2015; 06
References_xml – volume: 28
  start-page: 421
  year: Sep. 2016
  end-page: 431
  ident: bib31
  article-title: Influence of electrical impedance and mechanical bistability on galfenol-based unimorph harvesters
  publication-title: J. Intell. Mater. Syst. Struct.
– volume: 23
  start-page: 647
  year: Feb. 2012
  end-page: 654
  ident: bib52
  article-title: A bending-mode galfenol electric power harvester
  publication-title: J. Intell. Mater. Syst. Struct.
– volume: 1
  year: 2014
  ident: bib8
  article-title: Low-power electronics for energy harvesting sensors
  publication-title: Wirel. Power Transf.
– reference: T. Toluwaloju and C.K. Thein, “Enhancing voltage and power output through the structural optimization of coil–magnet transducers in electromagnetic vibration energy harvesters,” p. 105, 2025,
– volume: 253
  year: Feb. 2022
  ident: bib15
  article-title: An electromagnetic vibration energy harvester using a magnet-array-based vibration-to-rotation conversion mechanism
  publication-title: Energy Convers. Manag.
– volume: 45
  year: 2021
  ident: bib17
  article-title: Review of vibration-based electromagnetic–piezoelectric hybrid energy harvesters
  publication-title: Int. J. Energy Res.
– volume: 293
  year: 2023
  ident: bib36
  article-title: Theoretical and experimental investigation of magnet and coil arrays optimization for power density improvement in electromagnetic vibration energy harvesters
  publication-title: Energy Convers. Manag.
– volume: 12
  start-page: 1
  year: 2019
  end-page: 21
  ident: bib40
  article-title: Modeling and characterization of a kinetic energy harvesting device based on galfenol
  publication-title: Materials
– volume: 10
  year: 2022
  ident: bib48
  article-title: Design and characteristic analysis of magnetostrictive vibration harvester with double-stage rhombus amplification mechanism
  publication-title: Machines
– volume: 388
  year: Jul. 2025
  ident: bib27
  article-title: Magnetoelectric gyrator based on three-layer symmetrical structures: effect of magnetostrictive layer thickness
  publication-title: Sens. Actuators A Phys.
– volume: 13
  year: 2022
  ident: bib4
  article-title: Electromagnetic energy harvester design for power transmission line
  publication-title: Transdiscipl. J. Eng. Sci.
– volume: 55
  start-page: 1
  year: 2019
  end-page: 6
  ident: bib20
  article-title: Magnetostrictive energy harvesting: materials and design study
  publication-title: IEEE Trans. Magn.
– volume: 22
  year: 2022
  ident: bib7
  article-title: Radio frequency energy harvesting technologies: a comprehensive review on designing, methodologies, and potential applications
  publication-title: Sensors
– volume: 361
  year: Oct. 2023
  ident: bib9
  article-title: Study of a magnetostrictive energy harvester for harvesting transient shock vibration
  publication-title: Sens. Actuators A Phys.
– volume: 26
  year: 2015
  ident: bib3
  article-title: Material strength consideration in the design optimization of nonlinear energy harvester
  publication-title: J. Intell. Mater. Syst. Struct.
– volume: 200
  start-page: 2
  year: Oct. 2013
  end-page: 10
  ident: bib28
  article-title: Magnetostrictive resonators as sensors and actuators
  publication-title: Sens. Actuators A Phys.
– volume: 47
  year: 2011
  ident: bib33
  article-title: Performance of energy harvester using iron-gallium alloy in free vibration
  publication-title: IEEE Trans. Magn.
– volume: 111
  start-page: 2229
  year: 2014
  end-page: 2238
  ident: bib16
  article-title: Magnetostrictive particle based biosensors for in situ and real-time detection of pathogens in water
  publication-title: Biotechnol. Bioeng.
– volume: 50
  start-page: 1
  year: 2014
  end-page: 4
  ident: bib34
  article-title: A study on energy harvesting by amorphous strips
  publication-title: IEEE Trans. Magn.
– volume: 162
  year: Jan. 2022
  ident: bib21
  article-title: Investigation of an ultra-low frequency piezoelectric energy harvester with high frequency up-conversion factor caused by internal resonance mechanism
  publication-title: Mech. Syst. Signal Process
– volume: 6
  year: 2022
  ident: bib5
  article-title: Solar energy technology and its roles in sustainable development
  publication-title: Clean. Energy
– reference: .”
– volume: 118
  start-page: 287
  year: Jun. 2016
  end-page: 294
  ident: bib23
  article-title: A portable high-efficiency electromagnetic energy harvesting system using supercapacitors for renewable energy applications in railroads
  publication-title: Energy Convers. Manag.
– volume: 17
  year: 2008
  ident: bib29
  article-title: Vibration energy harvesting by magnetostrictive material
  publication-title: Smart Mater. Struct.
– volume: 20
  year: 2020
  ident: bib12
  article-title: Neutralization reaction assisted chemical-potential-driven ion transport through layered titanium carbides membrane for energy harvesting
  publication-title: Nano Lett.
– volume: 209
  year: 2009
  ident: bib43
  article-title: Sequential coupling simulation for electromagnetic-mechanical tube compression by finite element analysis
  publication-title: J. Mater. Process. Technol.
– volume: 26
  year: 2017
  ident: bib6
  article-title: Review of magnetostrictive vibration energy harvesters
  publication-title: Smart Mater. Struct.
– volume: 473
  year: 2023
  ident: bib19
  article-title: Flexible thermoelectric energy harvesting system based on polymer composites
  publication-title: Chem. Eng. J.
– volume: 22
  year: 2016
  ident: bib46
  article-title: An investigation into resonant frequency of trapezoidal V-shaped cantilever piezoelectric energy harvester
  publication-title: Microsyst. Technol.
– volume: 57
  start-page: 277
  year: 1995
  end-page: 285
  ident: bib45
  article-title: Formulation of Rayleigh damping and its extensions
  publication-title: Comput. Struct.
– volume: 366
  year: Feb. 2024
  ident: bib26
  article-title: Energy harvesting using magnetostrictive materials: Effects of material anisotropy and stress multiaxiality
  publication-title: Sens. Actuators A Phys.
– volume: 24
  year: 2024
  ident: bib41
  article-title: Electromagnetic vibrational harvester based on U-shaped ferromagnetic cantilever: a novel two-magnet configuration
  publication-title: Energy Convers. Manag. X
– volume: 107
  start-page: 3
  year: 2010
  end-page: 6
  ident: bib51
  article-title: Experimental tests of a magnetostrictive energy harvesting device toward its modeling
  publication-title: J. Appl. Phys.
– volume: 33
  year: 2015
  ident: bib1
  article-title: Energy harvesting wireless communications: a review of recent advances
  publication-title: IEEE J. Sel. Areas Commun.
– volume: 397
  start-page: 233
  year: Jan. 2016
  end-page: 239
  ident: bib32
  article-title: Mechanically induced magnetic diffusion in cylindrical magnetoelastic materials
  publication-title: J. Magn. Magn. Mater.
– volume: 117
  year: 2015
  ident: bib35
  article-title: Performance of improved magnetostrictive vibrational power generator, simple and high power output for practical applications
  publication-title: J. Appl. Phys.
– reference: TdVib LLC, “
– start-page: 375
  year: 2007
  end-page: 378
  ident: bib49
  article-title: Micro-engineered devices for motion energy harvesting
  publication-title: Tech. Dig. Int. Electron Devices Meet. IEDM No. March
– volume: 1052
  year: 2018
  ident: bib39
  article-title: Magnetostrictive low-cost high-performance vibration power generator
  publication-title: J. Phys. Conf. Ser.
– volume: 8688
  year: Apr. 2013
  ident: bib30
  article-title: Vibration energy harvesting using galfenol-based transducer
  publication-title: Proc. SPIE Int. Soc. Opt. Eng.
– volume: 355
  year: Jun. 2023
  ident: bib25
  article-title: Energy harvesting using a magnetostrictive transducer based on switching control
  publication-title: Sens. Actuators A Phys.
– volume: 24
  year: 2015
  ident: bib42
  article-title: Modeling and design of Galfenol unimorph energy harvesters
  publication-title: Smart Mater. Struct.
– volume: 12
  year: 2020
  ident: bib10
  article-title: Natural and eco-friendly materials for triboelectric energy harvesting
  publication-title: NanoMicro Lett.
– volume: 43
  start-page: 3940
  year: 2007
  end-page: 3951
  ident: bib24
  article-title: Review of microscale magnetic power generation
  publication-title: IEEE Trans. Magn.
– volume: 19
  year: 2019
  ident: bib22
  article-title: Strategies and techniques for powering wireless sensor nodes through energy harvesting and wireless power transfer
  publication-title: Sensors
– volume: 22
  year: 2022
  ident: bib11
  article-title: Electromagnetic vibrational energy harvesters: a review
  publication-title: Sensors
– volume: 70
  start-page: 1560
  year: 2023
  end-page: 1564
  ident: bib18
  article-title: Performance optimization of SSHC rectifiers for piezoelectric energy harvesting
  publication-title: IEEE Trans. Circuits Syst. II Express Briefs
– reference: .
– volume: 06
  start-page: 818
  year: 2015
  end-page: 827
  ident: bib47
  article-title: Piezoelectric vibration harvesters based on vibrations of cantilevered bimorphs: a review
  publication-title: Mater. Sci. Appl.
– volume: 285
  year: 2022
  ident: bib2
  article-title: Design and optimization of variable stiffness piezoelectric energy harvesters
  publication-title: Compos. Struct.
– volume: 229
  start-page: 1639
  year: Aug. 2014
  end-page: 1651
  ident: bib50
  article-title: Study on the giant magnetostrictive vibration-power generation method for battery-less tire pressure monitoring system
  publication-title: Proc. Inst. Mech. Eng. Part C. J. Mech. Eng. Sci.
– volume: 260
  year: 2020
  ident: bib14
  article-title: Electromagnetic energy harvesting using magnetic levitation architectures: a review
  publication-title: Appl. Energy
– volume: 28
  year: 2019
  ident: bib13
  article-title: A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008-2018)
  publication-title: Smart Mater. Struct.
– volume: 14
  year: 2024
  ident: bib38
  article-title: Combining magnetostriction with variable reluctance for energy harvesting at low frequency vibrations
  publication-title: Appl. Sci.
– year: 2024
  ident: bib53
  article-title: A novel ultra-low input voltage and frequency self starting AC-DC boost converter for micro energy harvesting
  publication-title: IEEE Sens. Lett.
– volume: 13
  year: 2022
  ident: 10.1016/j.sna.2025.117231_bib4
  article-title: Electromagnetic energy harvester design for power transmission line
  publication-title: Transdiscipl. J. Eng. Sci.
– volume: 43
  start-page: 3940
  year: 2007
  ident: 10.1016/j.sna.2025.117231_bib24
  article-title: Review of microscale magnetic power generation
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2007.906150
– volume: 57
  start-page: 277
  issue: 2
  year: 1995
  ident: 10.1016/j.sna.2025.117231_bib45
  article-title: Formulation of Rayleigh damping and its extensions
  publication-title: Comput. Struct.
  doi: 10.1016/0045-7949(94)00611-6
– volume: 28
  issue: 11
  year: 2019
  ident: 10.1016/j.sna.2025.117231_bib13
  article-title: A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008-2018)
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/ab36e4
– volume: 12
  start-page: 1
  issue: 19
  year: 2019
  ident: 10.1016/j.sna.2025.117231_bib40
  article-title: Modeling and characterization of a kinetic energy harvesting device based on galfenol
  publication-title: Materials
  doi: 10.3390/ma12193199
– volume: 19
  issue: 12
  year: 2019
  ident: 10.1016/j.sna.2025.117231_bib22
  article-title: Strategies and techniques for powering wireless sensor nodes through energy harvesting and wireless power transfer
  publication-title: Sensors
  doi: 10.3390/s19122660
– volume: 24
  issue: 12
  year: 2015
  ident: 10.1016/j.sna.2025.117231_bib42
  article-title: Modeling and design of Galfenol unimorph energy harvesters
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/24/12/125019
– volume: 45
  issue: 4
  year: 2021
  ident: 10.1016/j.sna.2025.117231_bib17
  article-title: Review of vibration-based electromagnetic–piezoelectric hybrid energy harvesters
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.6253
– volume: 26
  issue: 10
  year: 2017
  ident: 10.1016/j.sna.2025.117231_bib6
  article-title: Review of magnetostrictive vibration energy harvesters
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aa8347
– ident: 10.1016/j.sna.2025.117231_bib44
– volume: 26
  issue: 15
  year: 2015
  ident: 10.1016/j.sna.2025.117231_bib3
  article-title: Material strength consideration in the design optimization of nonlinear energy harvester
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X14546651
– volume: 33
  issue: 3
  year: 2015
  ident: 10.1016/j.sna.2025.117231_bib1
  article-title: Energy harvesting wireless communications: a review of recent advances
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2015.2391531
– volume: 17
  issue: 4
  year: 2008
  ident: 10.1016/j.sna.2025.117231_bib29
  article-title: Vibration energy harvesting by magnetostrictive material
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/17/4/045009
– volume: 293
  year: 2023
  ident: 10.1016/j.sna.2025.117231_bib36
  article-title: Theoretical and experimental investigation of magnet and coil arrays optimization for power density improvement in electromagnetic vibration energy harvesters
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2023.117411
– volume: 229
  start-page: 1639
  issue: 9
  year: 2014
  ident: 10.1016/j.sna.2025.117231_bib50
  article-title: Study on the giant magnetostrictive vibration-power generation method for battery-less tire pressure monitoring system
  publication-title: Proc. Inst. Mech. Eng. Part C. J. Mech. Eng. Sci.
  doi: 10.1177/0954406214545821
– volume: 117
  issue: 17
  year: 2015
  ident: 10.1016/j.sna.2025.117231_bib35
  article-title: Performance of improved magnetostrictive vibrational power generator, simple and high power output for practical applications
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4917464
– volume: 6
  issue: 3
  year: 2022
  ident: 10.1016/j.sna.2025.117231_bib5
  article-title: Solar energy technology and its roles in sustainable development
  publication-title: Clean. Energy
  doi: 10.1093/ce/zkac023
– volume: 8688
  year: 2013
  ident: 10.1016/j.sna.2025.117231_bib30
  article-title: Vibration energy harvesting using galfenol-based transducer
  publication-title: Proc. SPIE Int. Soc. Opt. Eng.
– volume: 209
  issue: 2
  year: 2009
  ident: 10.1016/j.sna.2025.117231_bib43
  article-title: Sequential coupling simulation for electromagnetic-mechanical tube compression by finite element analysis
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2008.02.061
– volume: 285
  year: 2022
  ident: 10.1016/j.sna.2025.117231_bib2
  article-title: Design and optimization of variable stiffness piezoelectric energy harvesters
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2022.115204
– volume: 14
  issue: 19
  year: 2024
  ident: 10.1016/j.sna.2025.117231_bib38
  article-title: Combining magnetostriction with variable reluctance for energy harvesting at low frequency vibrations
  publication-title: Appl. Sci.
  doi: 10.3390/app14199070
– volume: 200
  start-page: 2
  year: 2013
  ident: 10.1016/j.sna.2025.117231_bib28
  article-title: Magnetostrictive resonators as sensors and actuators
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2012.12.013
– volume: 50
  start-page: 1
  issue: 11
  year: 2014
  ident: 10.1016/j.sna.2025.117231_bib34
  article-title: A study on energy harvesting by amorphous strips
  publication-title: IEEE Trans. Magn.
– volume: 22
  issue: 5
  year: 2016
  ident: 10.1016/j.sna.2025.117231_bib46
  article-title: An investigation into resonant frequency of trapezoidal V-shaped cantilever piezoelectric energy harvester
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-015-2583-7
– volume: 20
  issue: 5
  year: 2020
  ident: 10.1016/j.sna.2025.117231_bib12
  article-title: Neutralization reaction assisted chemical-potential-driven ion transport through layered titanium carbides membrane for energy harvesting
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c00526
– year: 2024
  ident: 10.1016/j.sna.2025.117231_bib53
  article-title: A novel ultra-low input voltage and frequency self starting AC-DC boost converter for micro energy harvesting
  publication-title: IEEE Sens. Lett.
  doi: 10.1109/LSENS.2024.3387272
– volume: 24
  year: 2024
  ident: 10.1016/j.sna.2025.117231_bib41
  article-title: Electromagnetic vibrational harvester based on U-shaped ferromagnetic cantilever: a novel two-magnet configuration
  publication-title: Energy Convers. Manag. X
– volume: 1052
  issue: 1
  year: 2018
  ident: 10.1016/j.sna.2025.117231_bib39
  article-title: Magnetostrictive low-cost high-performance vibration power generator
  publication-title: J. Phys. Conf. Ser.
– volume: 361
  year: 2023
  ident: 10.1016/j.sna.2025.117231_bib9
  article-title: Study of a magnetostrictive energy harvester for harvesting transient shock vibration
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2023.114577
– volume: 366
  year: 2024
  ident: 10.1016/j.sna.2025.117231_bib26
  article-title: Energy harvesting using magnetostrictive materials: Effects of material anisotropy and stress multiaxiality
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2024.115017
– volume: 22
  issue: 15
  year: 2022
  ident: 10.1016/j.sna.2025.117231_bib11
  article-title: Electromagnetic vibrational energy harvesters: a review
  publication-title: Sensors
  doi: 10.3390/s22155555
– volume: 253
  year: 2022
  ident: 10.1016/j.sna.2025.117231_bib15
  article-title: An electromagnetic vibration energy harvester using a magnet-array-based vibration-to-rotation conversion mechanism
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2021.115146
– volume: 355
  year: 2023
  ident: 10.1016/j.sna.2025.117231_bib25
  article-title: Energy harvesting using a magnetostrictive transducer based on switching control
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2023.114303
– volume: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.sna.2025.117231_bib8
  article-title: Low-power electronics for energy harvesting sensors
  publication-title: Wirel. Power Transf.
– volume: 107
  start-page: 3
  issue: 9
  year: 2010
  ident: 10.1016/j.sna.2025.117231_bib51
  article-title: Experimental tests of a magnetostrictive energy harvesting device toward its modeling
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3357403
– volume: 23
  start-page: 647
  issue: 6
  year: 2012
  ident: 10.1016/j.sna.2025.117231_bib52
  article-title: A bending-mode galfenol electric power harvester
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X12436729
– volume: 397
  start-page: 233
  year: 2016
  ident: 10.1016/j.sna.2025.117231_bib32
  article-title: Mechanically induced magnetic diffusion in cylindrical magnetoelastic materials
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2015.08.074
– ident: 10.1016/j.sna.2025.117231_bib37
  doi: 10.3390/ecsa-11-20405
– volume: 06
  start-page: 818
  issue: 09
  year: 2015
  ident: 10.1016/j.sna.2025.117231_bib47
  article-title: Piezoelectric vibration harvesters based on vibrations of cantilevered bimorphs: a review
  publication-title: Mater. Sci. Appl.
– start-page: 375
  year: 2007
  ident: 10.1016/j.sna.2025.117231_bib49
  article-title: Micro-engineered devices for motion energy harvesting
  publication-title: Tech. Dig. Int. Electron Devices Meet. IEDM No. March
– volume: 22
  issue: 11
  year: 2022
  ident: 10.1016/j.sna.2025.117231_bib7
  article-title: Radio frequency energy harvesting technologies: a comprehensive review on designing, methodologies, and potential applications
  publication-title: Sensors
  doi: 10.3390/s22114144
– volume: 12
  issue: 1
  year: 2020
  ident: 10.1016/j.sna.2025.117231_bib10
  article-title: Natural and eco-friendly materials for triboelectric energy harvesting
  publication-title: NanoMicro Lett.
– volume: 473
  year: 2023
  ident: 10.1016/j.sna.2025.117231_bib19
  article-title: Flexible thermoelectric energy harvesting system based on polymer composites
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.145297
– volume: 70
  start-page: 1560
  issue: 4
  year: 2023
  ident: 10.1016/j.sna.2025.117231_bib18
  article-title: Performance optimization of SSHC rectifiers for piezoelectric energy harvesting
  publication-title: IEEE Trans. Circuits Syst. II Express Briefs
– volume: 162
  year: 2022
  ident: 10.1016/j.sna.2025.117231_bib21
  article-title: Investigation of an ultra-low frequency piezoelectric energy harvester with high frequency up-conversion factor caused by internal resonance mechanism
  publication-title: Mech. Syst. Signal Process
  doi: 10.1016/j.ymssp.2021.108038
– volume: 47
  issue: 10
  year: 2011
  ident: 10.1016/j.sna.2025.117231_bib33
  article-title: Performance of energy harvester using iron-gallium alloy in free vibration
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2011.2158303
– volume: 388
  year: 2025
  ident: 10.1016/j.sna.2025.117231_bib27
  article-title: Magnetoelectric gyrator based on three-layer symmetrical structures: effect of magnetostrictive layer thickness
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2025.116522
– volume: 55
  start-page: 1
  issue: 7
  year: 2019
  ident: 10.1016/j.sna.2025.117231_bib20
  article-title: Magnetostrictive energy harvesting: materials and design study
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2019.2891118
– volume: 118
  start-page: 287
  year: 2016
  ident: 10.1016/j.sna.2025.117231_bib23
  article-title: A portable high-efficiency electromagnetic energy harvesting system using supercapacitors for renewable energy applications in railroads
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2016.04.012
– volume: 28
  start-page: 421
  issue: 3
  year: 2016
  ident: 10.1016/j.sna.2025.117231_bib31
  article-title: Influence of electrical impedance and mechanical bistability on galfenol-based unimorph harvesters
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X16666176
– volume: 10
  issue: 10
  year: 2022
  ident: 10.1016/j.sna.2025.117231_bib48
  article-title: Design and characteristic analysis of magnetostrictive vibration harvester with double-stage rhombus amplification mechanism
  publication-title: Machines
  doi: 10.3390/machines10100848
– volume: 260
  year: 2020
  ident: 10.1016/j.sna.2025.117231_bib14
  article-title: Electromagnetic energy harvesting using magnetic levitation architectures: a review
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.114191
– volume: 111
  start-page: 2229
  issue: 11
  year: 2014
  ident: 10.1016/j.sna.2025.117231_bib16
  article-title: Magnetostrictive particle based biosensors for in situ and real-time detection of pathogens in water
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.25279
SSID ssj0003377
Score 2.4771497
Snippet Electromagnetic vibration energy harvesters are widely explored as low-cost and robust solutions for powering wireless and low-power electronics. Based on...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 117231
SubjectTerms Actuator
Energy harvesting
Finite element modelling
Magnetostriction
Resonator
Title Design and optimization of a compact rectangular galfenol-based magnetostrictive energy harvester
URI https://dx.doi.org/10.1016/j.sna.2025.117231
Volume 396
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  issn: 0924-4247
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0003377
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKxgM8oPElBgz5gScqR4nj1PFjgU6jQhPS-tC3yHYc2EeTquuqiSf-dO7iJMs6kACJlyiyaqfy_XQ-393vjpC3qQk13BsEi0cyZ8JGOdNSRkwl0ogoNYngvtmEPD5O53P1ZTD40XJhNheyLNPra7X8r6KGMRA2Umf_QtzdojAA7yB0eILY4flHgv9Y52TUQYEK9MGiIVo2RMjKsyJRz6GnEnNQ4YwoXFldMDzR8uFCfy3dusJ-HrUuHDpPD_ymV5u6rELfnj2BWzC266lLviIXBZv3BMNxUDfVQQAEXYYPEmj0Vh49DGOo_n28cN_Z0RVcBXIfCkJPfecqQM8A--x_uPQu72kw7a280qf1tEnpzqu-I4MnmBTieZbeu3aHYePdlFwwwX1VzlZjx74J7h3t7x0RZ8FliRWleIIRad4cMreLap_gurgsWIDIlBT3yC6XiQK9uDv-NJlPu9M8juvund3_aCPjdY7g1od-bdv07JXZHnnUXDTo2APkMRm48gl52Cs_-ZRoDxUKgqF9qNCqoJo2UKE9qNDbUKHbUKEeKrSDyjMyO5zMPhyxpuUGs0pEzI3kyEkTaa1NaMPYxKM813gQJUqnupDKasU5Bvp55JRNuUlMFKY5t4JrUPXPyU5Zle4FoZyHJiqUlQWYuM4ao3UOCqOIEou97Yp98q7dq2zpC6tkbcbhWQYbm-HGZn5j94lodzNrLENv8WUg-t9Pe_lv016RBzf4fE121qsrd0Du28369HL1pgHIT0QwiPo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+optimization+of+a+compact+rectangular+galfenol-based+magnetostrictive+energy+harvester&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Gandia%2C+David&rft.au=G%C3%B3mez-Hurtado%2C+Jorge&rft.au=Beato-L%C3%B3pez%2C+J.J.&rft.au=Garaio%2C+Eneko&rft.date=2025-12-16&rft.pub=Elsevier+B.V&rft.issn=0924-4247&rft.volume=396&rft_id=info:doi/10.1016%2Fj.sna.2025.117231&rft.externalDocID=S0924424725010374
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon