Design and optimization of a compact rectangular galfenol-based magnetostrictive energy harvester
Electromagnetic vibration energy harvesters are widely explored as low-cost and robust solutions for powering wireless and low-power electronics. Based on Faraday’s law, energy generation relies on the modification of the magnetic field distribution within a magnetic element caused by mechanical vib...
Uloženo v:
| Vydáno v: | Sensors and actuators. A. Physical. Ročník 396; s. 117231 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
16.12.2025
|
| Témata: | |
| ISSN: | 0924-4247 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Electromagnetic vibration energy harvesters are widely explored as low-cost and robust solutions for powering wireless and low-power electronics. Based on Faraday’s law, energy generation relies on the modification of the magnetic field distribution within a magnetic element caused by mechanical vibrations inducing an electromotive force (EMF) in a pick-up coil. Within cantilever-based approaches, most harvesters employ rectangular, U-shaped or V-Shaped beams coupled with active materials, coils and permanent magnets, with varying levels of complexity and efficiency. In this work, we present a magnetostrictive harvester based on a rectangular iron cantilever with a bonded Galfenol layer and two cubic magnets, to collect the energy of one dimensional vibrations, optimized through Finite Element simulations and experimental testing. Finite Element Method (FEM) is used to explain the harvester behavior. Magnetic modeling enabled accurate estimation of the H-field inside the Galfenol, guiding the system toward the optimal bias field (∼8 kA/m), while mechanical simulations provided insight into internal stress distribution. This dual modeling strategy not only supported the experimental results but also can be used to design efficient magnetostrictive harvesters for real-world applications. Thanks to the to the refinement process, the resulting design, despite its simplicity, delivers a peak power density of 2.12 mW/cm³ at 40 Hz resonance, demonstrating performance comparable to that of significantly more complex magnetostrictive harvesters.
[Display omitted]
•FEM guides bias field and stress optimization in a Galfenol harvester.•Simple rectangular design achieves 2.12 mW/cm³ at 40 Hz resonance.•Dual FEM modeling matches experimental voltage and stress results.•Accurate bias field estimation is key to maximizing output.•Compact 0.76 cm³ harvester is suitable for IoT and sensor integration. |
|---|---|
| AbstractList | Electromagnetic vibration energy harvesters are widely explored as low-cost and robust solutions for powering wireless and low-power electronics. Based on Faraday’s law, energy generation relies on the modification of the magnetic field distribution within a magnetic element caused by mechanical vibrations inducing an electromotive force (EMF) in a pick-up coil. Within cantilever-based approaches, most harvesters employ rectangular, U-shaped or V-Shaped beams coupled with active materials, coils and permanent magnets, with varying levels of complexity and efficiency. In this work, we present a magnetostrictive harvester based on a rectangular iron cantilever with a bonded Galfenol layer and two cubic magnets, to collect the energy of one dimensional vibrations, optimized through Finite Element simulations and experimental testing. Finite Element Method (FEM) is used to explain the harvester behavior. Magnetic modeling enabled accurate estimation of the H-field inside the Galfenol, guiding the system toward the optimal bias field (∼8 kA/m), while mechanical simulations provided insight into internal stress distribution. This dual modeling strategy not only supported the experimental results but also can be used to design efficient magnetostrictive harvesters for real-world applications. Thanks to the to the refinement process, the resulting design, despite its simplicity, delivers a peak power density of 2.12 mW/cm³ at 40 Hz resonance, demonstrating performance comparable to that of significantly more complex magnetostrictive harvesters.
[Display omitted]
•FEM guides bias field and stress optimization in a Galfenol harvester.•Simple rectangular design achieves 2.12 mW/cm³ at 40 Hz resonance.•Dual FEM modeling matches experimental voltage and stress results.•Accurate bias field estimation is key to maximizing output.•Compact 0.76 cm³ harvester is suitable for IoT and sensor integration. |
| ArticleNumber | 117231 |
| Author | Gandia, David Gómez-Polo, Cristina Royo-Silvestre, Isaac Vargas-Silva, Gustavo Gómez-Hurtado, Jorge Garaio, Eneko Beato-López, J.J. |
| Author_xml | – sequence: 1 givenname: David orcidid: 0000-0003-2203-6752 surname: Gandia fullname: Gandia, David email: david.gandia@unavarra.es organization: Departamento de Ciencias, Universidad Pública de Navarra, UPNA, Pamplona, Spain – sequence: 2 givenname: Jorge orcidid: 0009-0009-0110-4999 surname: Gómez-Hurtado fullname: Gómez-Hurtado, Jorge organization: Departamento de Ciencias, Universidad Pública de Navarra, UPNA, Pamplona, Spain – sequence: 3 givenname: J.J. orcidid: 0000-0002-9339-3557 surname: Beato-López fullname: Beato-López, J.J. organization: Departamento de Ciencias, Universidad Pública de Navarra, UPNA, Pamplona, Spain – sequence: 4 givenname: Eneko orcidid: 0000-0002-3144-7898 surname: Garaio fullname: Garaio, Eneko organization: Departamento de Ciencias, Universidad Pública de Navarra, UPNA, Pamplona, Spain – sequence: 5 givenname: Isaac orcidid: 0000-0002-5663-8631 surname: Royo-Silvestre fullname: Royo-Silvestre, Isaac organization: Departamento de Ciencias, Universidad Pública de Navarra, UPNA, Pamplona, Spain – sequence: 6 givenname: Gustavo orcidid: 0000-0002-2472-9440 surname: Vargas-Silva fullname: Vargas-Silva, Gustavo organization: Institute for Advanced Materials and Mathematics INAMAT2, Universidad Pública de Navarra, UPNA, Pamplona, Spain – sequence: 7 givenname: Cristina surname: Gómez-Polo fullname: Gómez-Polo, Cristina organization: Departamento de Ciencias, Universidad Pública de Navarra, UPNA, Pamplona, Spain |
| BookMark | eNp9kL1OwzAUhT0UiRZ4ADa_QILtpHEsJlR-pUos3a0b-ya4SuzKNpXK05OqzExn-o7O-VZk4YNHQu45KznjzcO-TB5KwcS65FyKii_IkilRF7Wo5TVZpbRnjFWVlEsCz5jc4Cl4S8Mhu8n9QHbB09BToCZMBzCZRjQZ_PA9QqQDjD36MBYdJLR0gsFjDilHZ7I7IkWPcTjRL4hHTBnjLbnqYUx495c3ZPf6stu8F9vPt4_N07YwquYFNrJB2XEA6JhhVVc11gJrW7lW0EIvlQElxPxHCo7KtKJbd5y1VphagFTVDeGXWhNDShF7fYhugnjSnOmzFr3XsxZ91qIvWmbm8cLgvOvoMOpkHHqD1p0faxvcP_QvS-NwqQ |
| Cites_doi | 10.1109/TMAG.2007.906150 10.1016/0045-7949(94)00611-6 10.1088/1361-665X/ab36e4 10.3390/ma12193199 10.3390/s19122660 10.1088/0964-1726/24/12/125019 10.1002/er.6253 10.1088/1361-665X/aa8347 10.1177/1045389X14546651 10.1109/JSAC.2015.2391531 10.1088/0964-1726/17/4/045009 10.1016/j.enconman.2023.117411 10.1177/0954406214545821 10.1063/1.4917464 10.1093/ce/zkac023 10.1016/j.jmatprotec.2008.02.061 10.1016/j.compstruct.2022.115204 10.3390/app14199070 10.1016/j.sna.2012.12.013 10.1007/s00542-015-2583-7 10.1021/acs.nanolett.0c00526 10.1109/LSENS.2024.3387272 10.1016/j.sna.2023.114577 10.1016/j.sna.2024.115017 10.3390/s22155555 10.1016/j.enconman.2021.115146 10.1016/j.sna.2023.114303 10.1063/1.3357403 10.1177/1045389X12436729 10.1016/j.jmmm.2015.08.074 10.3390/ecsa-11-20405 10.3390/s22114144 10.1016/j.cej.2023.145297 10.1016/j.ymssp.2021.108038 10.1109/TMAG.2011.2158303 10.1016/j.sna.2025.116522 10.1109/TMAG.2019.2891118 10.1016/j.enconman.2016.04.012 10.1177/1045389X16666176 10.3390/machines10100848 10.1016/j.apenergy.2019.114191 10.1002/bit.25279 |
| ContentType | Journal Article |
| Copyright | 2025 The Authors |
| Copyright_xml | – notice: 2025 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.sna.2025.117231 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_sna_2025_117231 S0924424725010374 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AATTM AAXKI AAXUO AAYWO ABMAC ABNEU ACDAQ ACFVG ACGFS ACIWK ACLOT ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEIPS AEKER AFJKZ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIIUN AIKHN AITUG AIVDX AJSZI ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M36 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSK SSQ SST SSZ T5K TN5 YK3 ~G- ~HD 9DU AAQXK AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AGQPQ AJQLL ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HMU HVGLF HZ~ R2- SCB SCH SET WUQ |
| ID | FETCH-LOGICAL-c941-e676e7b1aaab0c03b36dda088759a8af79ca922117721e9c82b5b108d2c42a793 |
| ISSN | 0924-4247 |
| IngestDate | Thu Nov 27 01:01:09 EST 2025 Sat Nov 29 17:01:17 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Resonator Finite element modelling Magnetostriction Energy harvesting Actuator |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c941-e676e7b1aaab0c03b36dda088759a8af79ca922117721e9c82b5b108d2c42a793 |
| ORCID | 0000-0003-2203-6752 0000-0002-2472-9440 0000-0002-3144-7898 0009-0009-0110-4999 0000-0002-9339-3557 0000-0002-5663-8631 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.sna.2025.117231 |
| ParticipantIDs | crossref_primary_10_1016_j_sna_2025_117231 elsevier_sciencedirect_doi_10_1016_j_sna_2025_117231 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-12-16 |
| PublicationDateYYYYMMDD | 2025-12-16 |
| PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationTitle | Sensors and actuators. A. Physical. |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Castellanos-Aldave, Cruz-Blas, Carlosena (bib53) 2024 Cao, Huang (bib2) 2022; 285 Berbyuk (bib30) Apr. 2013; 8688 Upadrashta, Yang, Tang (bib3) 2015; 26 Yue, Du (bib18) 2023; 70 Filippov (bib27) Jul. 2025; 388 Maka, Alabid (bib5) 2022; 6 Gandia (bib41) 2024; 24 Ueno (bib35) 2015; 117 Ahmad, Khan (bib17) 2021; 45 Wang (bib15) Feb. 2022; 253 Deng, Dapino (bib31) Sep. 2016; 28 Bjurström, Rusu, Johansson (bib38) 2024; 14 ” Clemente, Davino (bib40) 2019; 12 Deng, Dapino (bib6) 2017; 26 Zhang, Zhang, Pan, Salman, Yuan, Liu (bib23) Jun. 2016; 118 Haiping, Chunfeng, Jianghua (bib43) 2009; 209 Zhang, Fu, Zhang, Cheng, Huang (bib16) 2014; 111 Balcı, Sakar, Dalcalı (bib4) 2022; 13 Scheidler, Dapino (bib32) Jan. 2016; 397 Liu, Liu, Zhao, Li, Yu (bib48) 2022; 10 Liu, Wang, Zhang, Wang (bib50) Aug. 2014; 229 Li (bib36) 2023; 293 . Rodrigues-Marinho (bib19) 2023; 473 Adly, Davlno, Glustlnlanl, Visone (bib51) 2010; 107 Liu, Gorman (bib45) 1995; 57 Yeatman, Mitcheson, Holmes (bib49) 2007 Liu, Daniel, Sebald, Lallart, Makihara, Ducharne (bib26) Feb. 2024; 366 Wei, Liu, Shu, Zhao, Liu, Chang (bib9) Oct. 2023; 361 Deng, Dapino (bib42) 2015; 24 Arnold (bib24) 2007; 43 Zucca, Bottauscio, Beatrice, Hadadian, Fiorillo, Martino (bib34) 2014; 50 Muscat, Bhattacharya, Zhu (bib11) 2022; 22 Liu (bib12) 2020; 20 Li (bib25) Jun. 2023; 355 Ulukus (bib1) 2015; 33 Ueno, Yamada (bib33) 2011; 47 Khalid, Redhewal, Kumar, Srivastav (bib47) 2015; 06 Dunbar, Popović (bib8) 2014; 1 Zhang, Zhang, Fu, Li, Chen, Cheng (bib28) Oct. 2013; 200 Safaei, Sodano, Anton (bib13) 2019; 28 Backman, Lawton, Morley (bib20) 2019; 55 TdVib LLC La Rosa, Livreri, Trigona, Di Donato, Sorbello (bib22) 2019; 19 Ueno (bib39) 2018; 1052 Yoo, Flatau (bib52) Feb. 2012; 23 T. Toluwaloju and C.K. Thein, “Enhancing voltage and power output through the structural optimization of coil–magnet transducers in electromagnetic vibration energy harvesters,” p. 105, 2025 Wu, Li, Fan, Ji, Qiu (bib21) Jan. 2022; 162 Hosseini, Hamedi (bib46) 2016; 22 Carneiro (bib14) 2020; 260 Wang, Yuan (bib29) 2008; 17 Ibrahim (bib7) 2022; 22 Slabov, Kopyl, Soares dos Santos, Kholkin (bib10) 2020; 12 Arnold (10.1016/j.sna.2025.117231_bib24) 2007; 43 Zucca (10.1016/j.sna.2025.117231_bib34) 2014; 50 Berbyuk (10.1016/j.sna.2025.117231_bib30) 2013; 8688 Muscat (10.1016/j.sna.2025.117231_bib11) 2022; 22 Wei (10.1016/j.sna.2025.117231_bib9) 2023; 361 Rodrigues-Marinho (10.1016/j.sna.2025.117231_bib19) 2023; 473 10.1016/j.sna.2025.117231_bib37 Balcı (10.1016/j.sna.2025.117231_bib4) 2022; 13 Zhang (10.1016/j.sna.2025.117231_bib28) 2013; 200 Wang (10.1016/j.sna.2025.117231_bib29) 2008; 17 Adly (10.1016/j.sna.2025.117231_bib51) 2010; 107 Cao (10.1016/j.sna.2025.117231_bib2) 2022; 285 Deng (10.1016/j.sna.2025.117231_bib6) 2017; 26 Filippov (10.1016/j.sna.2025.117231_bib27) 2025; 388 Ibrahim (10.1016/j.sna.2025.117231_bib7) 2022; 22 Zhang (10.1016/j.sna.2025.117231_bib16) 2014; 111 Liu (10.1016/j.sna.2025.117231_bib45) 1995; 57 Liu (10.1016/j.sna.2025.117231_bib50) 2014; 229 Yoo (10.1016/j.sna.2025.117231_bib52) 2012; 23 Dunbar (10.1016/j.sna.2025.117231_bib8) 2014; 1 Hosseini (10.1016/j.sna.2025.117231_bib46) 2016; 22 Backman (10.1016/j.sna.2025.117231_bib20) 2019; 55 Zhang (10.1016/j.sna.2025.117231_bib23) 2016; 118 10.1016/j.sna.2025.117231_bib44 Gandia (10.1016/j.sna.2025.117231_bib41) 2024; 24 Li (10.1016/j.sna.2025.117231_bib25) 2023; 355 Upadrashta (10.1016/j.sna.2025.117231_bib3) 2015; 26 Deng (10.1016/j.sna.2025.117231_bib42) 2015; 24 Scheidler (10.1016/j.sna.2025.117231_bib32) 2016; 397 Ahmad (10.1016/j.sna.2025.117231_bib17) 2021; 45 Yue (10.1016/j.sna.2025.117231_bib18) 2023; 70 Wu (10.1016/j.sna.2025.117231_bib21) 2022; 162 Liu (10.1016/j.sna.2025.117231_bib48) 2022; 10 Liu (10.1016/j.sna.2025.117231_bib26) 2024; 366 Maka (10.1016/j.sna.2025.117231_bib5) 2022; 6 Ueno (10.1016/j.sna.2025.117231_bib35) 2015; 117 Liu (10.1016/j.sna.2025.117231_bib12) 2020; 20 Castellanos-Aldave (10.1016/j.sna.2025.117231_bib53) 2024 Bjurström (10.1016/j.sna.2025.117231_bib38) 2024; 14 Carneiro (10.1016/j.sna.2025.117231_bib14) 2020; 260 Slabov (10.1016/j.sna.2025.117231_bib10) 2020; 12 Clemente (10.1016/j.sna.2025.117231_bib40) 2019; 12 Wang (10.1016/j.sna.2025.117231_bib15) 2022; 253 Deng (10.1016/j.sna.2025.117231_bib31) 2016; 28 Ueno (10.1016/j.sna.2025.117231_bib33) 2011; 47 Ulukus (10.1016/j.sna.2025.117231_bib1) 2015; 33 Haiping (10.1016/j.sna.2025.117231_bib43) 2009; 209 Ueno (10.1016/j.sna.2025.117231_bib39) 2018; 1052 Li (10.1016/j.sna.2025.117231_bib36) 2023; 293 Yeatman (10.1016/j.sna.2025.117231_bib49) 2007 Safaei (10.1016/j.sna.2025.117231_bib13) 2019; 28 La Rosa (10.1016/j.sna.2025.117231_bib22) 2019; 19 Khalid (10.1016/j.sna.2025.117231_bib47) 2015; 06 |
| References_xml | – volume: 28 start-page: 421 year: Sep. 2016 end-page: 431 ident: bib31 article-title: Influence of electrical impedance and mechanical bistability on galfenol-based unimorph harvesters publication-title: J. Intell. Mater. Syst. Struct. – volume: 23 start-page: 647 year: Feb. 2012 end-page: 654 ident: bib52 article-title: A bending-mode galfenol electric power harvester publication-title: J. Intell. Mater. Syst. Struct. – volume: 1 year: 2014 ident: bib8 article-title: Low-power electronics for energy harvesting sensors publication-title: Wirel. Power Transf. – reference: T. Toluwaloju and C.K. Thein, “Enhancing voltage and power output through the structural optimization of coil–magnet transducers in electromagnetic vibration energy harvesters,” p. 105, 2025, – volume: 253 year: Feb. 2022 ident: bib15 article-title: An electromagnetic vibration energy harvester using a magnet-array-based vibration-to-rotation conversion mechanism publication-title: Energy Convers. Manag. – volume: 45 year: 2021 ident: bib17 article-title: Review of vibration-based electromagnetic–piezoelectric hybrid energy harvesters publication-title: Int. J. Energy Res. – volume: 293 year: 2023 ident: bib36 article-title: Theoretical and experimental investigation of magnet and coil arrays optimization for power density improvement in electromagnetic vibration energy harvesters publication-title: Energy Convers. Manag. – volume: 12 start-page: 1 year: 2019 end-page: 21 ident: bib40 article-title: Modeling and characterization of a kinetic energy harvesting device based on galfenol publication-title: Materials – volume: 10 year: 2022 ident: bib48 article-title: Design and characteristic analysis of magnetostrictive vibration harvester with double-stage rhombus amplification mechanism publication-title: Machines – volume: 388 year: Jul. 2025 ident: bib27 article-title: Magnetoelectric gyrator based on three-layer symmetrical structures: effect of magnetostrictive layer thickness publication-title: Sens. Actuators A Phys. – volume: 13 year: 2022 ident: bib4 article-title: Electromagnetic energy harvester design for power transmission line publication-title: Transdiscipl. J. Eng. Sci. – volume: 55 start-page: 1 year: 2019 end-page: 6 ident: bib20 article-title: Magnetostrictive energy harvesting: materials and design study publication-title: IEEE Trans. Magn. – volume: 22 year: 2022 ident: bib7 article-title: Radio frequency energy harvesting technologies: a comprehensive review on designing, methodologies, and potential applications publication-title: Sensors – volume: 361 year: Oct. 2023 ident: bib9 article-title: Study of a magnetostrictive energy harvester for harvesting transient shock vibration publication-title: Sens. Actuators A Phys. – volume: 26 year: 2015 ident: bib3 article-title: Material strength consideration in the design optimization of nonlinear energy harvester publication-title: J. Intell. Mater. Syst. Struct. – volume: 200 start-page: 2 year: Oct. 2013 end-page: 10 ident: bib28 article-title: Magnetostrictive resonators as sensors and actuators publication-title: Sens. Actuators A Phys. – volume: 47 year: 2011 ident: bib33 article-title: Performance of energy harvester using iron-gallium alloy in free vibration publication-title: IEEE Trans. Magn. – volume: 111 start-page: 2229 year: 2014 end-page: 2238 ident: bib16 article-title: Magnetostrictive particle based biosensors for in situ and real-time detection of pathogens in water publication-title: Biotechnol. Bioeng. – volume: 50 start-page: 1 year: 2014 end-page: 4 ident: bib34 article-title: A study on energy harvesting by amorphous strips publication-title: IEEE Trans. Magn. – volume: 162 year: Jan. 2022 ident: bib21 article-title: Investigation of an ultra-low frequency piezoelectric energy harvester with high frequency up-conversion factor caused by internal resonance mechanism publication-title: Mech. Syst. Signal Process – volume: 6 year: 2022 ident: bib5 article-title: Solar energy technology and its roles in sustainable development publication-title: Clean. Energy – reference: .” – volume: 118 start-page: 287 year: Jun. 2016 end-page: 294 ident: bib23 article-title: A portable high-efficiency electromagnetic energy harvesting system using supercapacitors for renewable energy applications in railroads publication-title: Energy Convers. Manag. – volume: 17 year: 2008 ident: bib29 article-title: Vibration energy harvesting by magnetostrictive material publication-title: Smart Mater. Struct. – volume: 20 year: 2020 ident: bib12 article-title: Neutralization reaction assisted chemical-potential-driven ion transport through layered titanium carbides membrane for energy harvesting publication-title: Nano Lett. – volume: 209 year: 2009 ident: bib43 article-title: Sequential coupling simulation for electromagnetic-mechanical tube compression by finite element analysis publication-title: J. Mater. Process. Technol. – volume: 26 year: 2017 ident: bib6 article-title: Review of magnetostrictive vibration energy harvesters publication-title: Smart Mater. Struct. – volume: 473 year: 2023 ident: bib19 article-title: Flexible thermoelectric energy harvesting system based on polymer composites publication-title: Chem. Eng. J. – volume: 22 year: 2016 ident: bib46 article-title: An investigation into resonant frequency of trapezoidal V-shaped cantilever piezoelectric energy harvester publication-title: Microsyst. Technol. – volume: 57 start-page: 277 year: 1995 end-page: 285 ident: bib45 article-title: Formulation of Rayleigh damping and its extensions publication-title: Comput. Struct. – volume: 366 year: Feb. 2024 ident: bib26 article-title: Energy harvesting using magnetostrictive materials: Effects of material anisotropy and stress multiaxiality publication-title: Sens. Actuators A Phys. – volume: 24 year: 2024 ident: bib41 article-title: Electromagnetic vibrational harvester based on U-shaped ferromagnetic cantilever: a novel two-magnet configuration publication-title: Energy Convers. Manag. X – volume: 107 start-page: 3 year: 2010 end-page: 6 ident: bib51 article-title: Experimental tests of a magnetostrictive energy harvesting device toward its modeling publication-title: J. Appl. Phys. – volume: 33 year: 2015 ident: bib1 article-title: Energy harvesting wireless communications: a review of recent advances publication-title: IEEE J. Sel. Areas Commun. – volume: 397 start-page: 233 year: Jan. 2016 end-page: 239 ident: bib32 article-title: Mechanically induced magnetic diffusion in cylindrical magnetoelastic materials publication-title: J. Magn. Magn. Mater. – volume: 117 year: 2015 ident: bib35 article-title: Performance of improved magnetostrictive vibrational power generator, simple and high power output for practical applications publication-title: J. Appl. Phys. – reference: TdVib LLC, “ – start-page: 375 year: 2007 end-page: 378 ident: bib49 article-title: Micro-engineered devices for motion energy harvesting publication-title: Tech. Dig. Int. Electron Devices Meet. IEDM No. March – volume: 1052 year: 2018 ident: bib39 article-title: Magnetostrictive low-cost high-performance vibration power generator publication-title: J. Phys. Conf. Ser. – volume: 8688 year: Apr. 2013 ident: bib30 article-title: Vibration energy harvesting using galfenol-based transducer publication-title: Proc. SPIE Int. Soc. Opt. Eng. – volume: 355 year: Jun. 2023 ident: bib25 article-title: Energy harvesting using a magnetostrictive transducer based on switching control publication-title: Sens. Actuators A Phys. – volume: 24 year: 2015 ident: bib42 article-title: Modeling and design of Galfenol unimorph energy harvesters publication-title: Smart Mater. Struct. – volume: 12 year: 2020 ident: bib10 article-title: Natural and eco-friendly materials for triboelectric energy harvesting publication-title: NanoMicro Lett. – volume: 43 start-page: 3940 year: 2007 end-page: 3951 ident: bib24 article-title: Review of microscale magnetic power generation publication-title: IEEE Trans. Magn. – volume: 19 year: 2019 ident: bib22 article-title: Strategies and techniques for powering wireless sensor nodes through energy harvesting and wireless power transfer publication-title: Sensors – volume: 22 year: 2022 ident: bib11 article-title: Electromagnetic vibrational energy harvesters: a review publication-title: Sensors – volume: 70 start-page: 1560 year: 2023 end-page: 1564 ident: bib18 article-title: Performance optimization of SSHC rectifiers for piezoelectric energy harvesting publication-title: IEEE Trans. Circuits Syst. II Express Briefs – reference: . – volume: 06 start-page: 818 year: 2015 end-page: 827 ident: bib47 article-title: Piezoelectric vibration harvesters based on vibrations of cantilevered bimorphs: a review publication-title: Mater. Sci. Appl. – volume: 285 year: 2022 ident: bib2 article-title: Design and optimization of variable stiffness piezoelectric energy harvesters publication-title: Compos. Struct. – volume: 229 start-page: 1639 year: Aug. 2014 end-page: 1651 ident: bib50 article-title: Study on the giant magnetostrictive vibration-power generation method for battery-less tire pressure monitoring system publication-title: Proc. Inst. Mech. Eng. Part C. J. Mech. Eng. Sci. – volume: 260 year: 2020 ident: bib14 article-title: Electromagnetic energy harvesting using magnetic levitation architectures: a review publication-title: Appl. Energy – volume: 28 year: 2019 ident: bib13 article-title: A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008-2018) publication-title: Smart Mater. Struct. – volume: 14 year: 2024 ident: bib38 article-title: Combining magnetostriction with variable reluctance for energy harvesting at low frequency vibrations publication-title: Appl. Sci. – year: 2024 ident: bib53 article-title: A novel ultra-low input voltage and frequency self starting AC-DC boost converter for micro energy harvesting publication-title: IEEE Sens. Lett. – volume: 13 year: 2022 ident: 10.1016/j.sna.2025.117231_bib4 article-title: Electromagnetic energy harvester design for power transmission line publication-title: Transdiscipl. J. Eng. Sci. – volume: 43 start-page: 3940 year: 2007 ident: 10.1016/j.sna.2025.117231_bib24 article-title: Review of microscale magnetic power generation publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2007.906150 – volume: 57 start-page: 277 issue: 2 year: 1995 ident: 10.1016/j.sna.2025.117231_bib45 article-title: Formulation of Rayleigh damping and its extensions publication-title: Comput. Struct. doi: 10.1016/0045-7949(94)00611-6 – volume: 28 issue: 11 year: 2019 ident: 10.1016/j.sna.2025.117231_bib13 article-title: A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008-2018) publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/ab36e4 – volume: 12 start-page: 1 issue: 19 year: 2019 ident: 10.1016/j.sna.2025.117231_bib40 article-title: Modeling and characterization of a kinetic energy harvesting device based on galfenol publication-title: Materials doi: 10.3390/ma12193199 – volume: 19 issue: 12 year: 2019 ident: 10.1016/j.sna.2025.117231_bib22 article-title: Strategies and techniques for powering wireless sensor nodes through energy harvesting and wireless power transfer publication-title: Sensors doi: 10.3390/s19122660 – volume: 24 issue: 12 year: 2015 ident: 10.1016/j.sna.2025.117231_bib42 article-title: Modeling and design of Galfenol unimorph energy harvesters publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/24/12/125019 – volume: 45 issue: 4 year: 2021 ident: 10.1016/j.sna.2025.117231_bib17 article-title: Review of vibration-based electromagnetic–piezoelectric hybrid energy harvesters publication-title: Int. J. Energy Res. doi: 10.1002/er.6253 – volume: 26 issue: 10 year: 2017 ident: 10.1016/j.sna.2025.117231_bib6 article-title: Review of magnetostrictive vibration energy harvesters publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aa8347 – ident: 10.1016/j.sna.2025.117231_bib44 – volume: 26 issue: 15 year: 2015 ident: 10.1016/j.sna.2025.117231_bib3 article-title: Material strength consideration in the design optimization of nonlinear energy harvester publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X14546651 – volume: 33 issue: 3 year: 2015 ident: 10.1016/j.sna.2025.117231_bib1 article-title: Energy harvesting wireless communications: a review of recent advances publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2015.2391531 – volume: 17 issue: 4 year: 2008 ident: 10.1016/j.sna.2025.117231_bib29 article-title: Vibration energy harvesting by magnetostrictive material publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/17/4/045009 – volume: 293 year: 2023 ident: 10.1016/j.sna.2025.117231_bib36 article-title: Theoretical and experimental investigation of magnet and coil arrays optimization for power density improvement in electromagnetic vibration energy harvesters publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2023.117411 – volume: 229 start-page: 1639 issue: 9 year: 2014 ident: 10.1016/j.sna.2025.117231_bib50 article-title: Study on the giant magnetostrictive vibration-power generation method for battery-less tire pressure monitoring system publication-title: Proc. Inst. Mech. Eng. Part C. J. Mech. Eng. Sci. doi: 10.1177/0954406214545821 – volume: 117 issue: 17 year: 2015 ident: 10.1016/j.sna.2025.117231_bib35 article-title: Performance of improved magnetostrictive vibrational power generator, simple and high power output for practical applications publication-title: J. Appl. Phys. doi: 10.1063/1.4917464 – volume: 6 issue: 3 year: 2022 ident: 10.1016/j.sna.2025.117231_bib5 article-title: Solar energy technology and its roles in sustainable development publication-title: Clean. Energy doi: 10.1093/ce/zkac023 – volume: 8688 year: 2013 ident: 10.1016/j.sna.2025.117231_bib30 article-title: Vibration energy harvesting using galfenol-based transducer publication-title: Proc. SPIE Int. Soc. Opt. Eng. – volume: 209 issue: 2 year: 2009 ident: 10.1016/j.sna.2025.117231_bib43 article-title: Sequential coupling simulation for electromagnetic-mechanical tube compression by finite element analysis publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2008.02.061 – volume: 285 year: 2022 ident: 10.1016/j.sna.2025.117231_bib2 article-title: Design and optimization of variable stiffness piezoelectric energy harvesters publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2022.115204 – volume: 14 issue: 19 year: 2024 ident: 10.1016/j.sna.2025.117231_bib38 article-title: Combining magnetostriction with variable reluctance for energy harvesting at low frequency vibrations publication-title: Appl. Sci. doi: 10.3390/app14199070 – volume: 200 start-page: 2 year: 2013 ident: 10.1016/j.sna.2025.117231_bib28 article-title: Magnetostrictive resonators as sensors and actuators publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2012.12.013 – volume: 50 start-page: 1 issue: 11 year: 2014 ident: 10.1016/j.sna.2025.117231_bib34 article-title: A study on energy harvesting by amorphous strips publication-title: IEEE Trans. Magn. – volume: 22 issue: 5 year: 2016 ident: 10.1016/j.sna.2025.117231_bib46 article-title: An investigation into resonant frequency of trapezoidal V-shaped cantilever piezoelectric energy harvester publication-title: Microsyst. Technol. doi: 10.1007/s00542-015-2583-7 – volume: 20 issue: 5 year: 2020 ident: 10.1016/j.sna.2025.117231_bib12 article-title: Neutralization reaction assisted chemical-potential-driven ion transport through layered titanium carbides membrane for energy harvesting publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c00526 – year: 2024 ident: 10.1016/j.sna.2025.117231_bib53 article-title: A novel ultra-low input voltage and frequency self starting AC-DC boost converter for micro energy harvesting publication-title: IEEE Sens. Lett. doi: 10.1109/LSENS.2024.3387272 – volume: 24 year: 2024 ident: 10.1016/j.sna.2025.117231_bib41 article-title: Electromagnetic vibrational harvester based on U-shaped ferromagnetic cantilever: a novel two-magnet configuration publication-title: Energy Convers. Manag. X – volume: 1052 issue: 1 year: 2018 ident: 10.1016/j.sna.2025.117231_bib39 article-title: Magnetostrictive low-cost high-performance vibration power generator publication-title: J. Phys. Conf. Ser. – volume: 361 year: 2023 ident: 10.1016/j.sna.2025.117231_bib9 article-title: Study of a magnetostrictive energy harvester for harvesting transient shock vibration publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2023.114577 – volume: 366 year: 2024 ident: 10.1016/j.sna.2025.117231_bib26 article-title: Energy harvesting using magnetostrictive materials: Effects of material anisotropy and stress multiaxiality publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2024.115017 – volume: 22 issue: 15 year: 2022 ident: 10.1016/j.sna.2025.117231_bib11 article-title: Electromagnetic vibrational energy harvesters: a review publication-title: Sensors doi: 10.3390/s22155555 – volume: 253 year: 2022 ident: 10.1016/j.sna.2025.117231_bib15 article-title: An electromagnetic vibration energy harvester using a magnet-array-based vibration-to-rotation conversion mechanism publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2021.115146 – volume: 355 year: 2023 ident: 10.1016/j.sna.2025.117231_bib25 article-title: Energy harvesting using a magnetostrictive transducer based on switching control publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2023.114303 – volume: 1 issue: 1 year: 2014 ident: 10.1016/j.sna.2025.117231_bib8 article-title: Low-power electronics for energy harvesting sensors publication-title: Wirel. Power Transf. – volume: 107 start-page: 3 issue: 9 year: 2010 ident: 10.1016/j.sna.2025.117231_bib51 article-title: Experimental tests of a magnetostrictive energy harvesting device toward its modeling publication-title: J. Appl. Phys. doi: 10.1063/1.3357403 – volume: 23 start-page: 647 issue: 6 year: 2012 ident: 10.1016/j.sna.2025.117231_bib52 article-title: A bending-mode galfenol electric power harvester publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X12436729 – volume: 397 start-page: 233 year: 2016 ident: 10.1016/j.sna.2025.117231_bib32 article-title: Mechanically induced magnetic diffusion in cylindrical magnetoelastic materials publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2015.08.074 – ident: 10.1016/j.sna.2025.117231_bib37 doi: 10.3390/ecsa-11-20405 – volume: 06 start-page: 818 issue: 09 year: 2015 ident: 10.1016/j.sna.2025.117231_bib47 article-title: Piezoelectric vibration harvesters based on vibrations of cantilevered bimorphs: a review publication-title: Mater. Sci. Appl. – start-page: 375 year: 2007 ident: 10.1016/j.sna.2025.117231_bib49 article-title: Micro-engineered devices for motion energy harvesting publication-title: Tech. Dig. Int. Electron Devices Meet. IEDM No. March – volume: 22 issue: 11 year: 2022 ident: 10.1016/j.sna.2025.117231_bib7 article-title: Radio frequency energy harvesting technologies: a comprehensive review on designing, methodologies, and potential applications publication-title: Sensors doi: 10.3390/s22114144 – volume: 12 issue: 1 year: 2020 ident: 10.1016/j.sna.2025.117231_bib10 article-title: Natural and eco-friendly materials for triboelectric energy harvesting publication-title: NanoMicro Lett. – volume: 473 year: 2023 ident: 10.1016/j.sna.2025.117231_bib19 article-title: Flexible thermoelectric energy harvesting system based on polymer composites publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.145297 – volume: 70 start-page: 1560 issue: 4 year: 2023 ident: 10.1016/j.sna.2025.117231_bib18 article-title: Performance optimization of SSHC rectifiers for piezoelectric energy harvesting publication-title: IEEE Trans. Circuits Syst. II Express Briefs – volume: 162 year: 2022 ident: 10.1016/j.sna.2025.117231_bib21 article-title: Investigation of an ultra-low frequency piezoelectric energy harvester with high frequency up-conversion factor caused by internal resonance mechanism publication-title: Mech. Syst. Signal Process doi: 10.1016/j.ymssp.2021.108038 – volume: 47 issue: 10 year: 2011 ident: 10.1016/j.sna.2025.117231_bib33 article-title: Performance of energy harvester using iron-gallium alloy in free vibration publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2011.2158303 – volume: 388 year: 2025 ident: 10.1016/j.sna.2025.117231_bib27 article-title: Magnetoelectric gyrator based on three-layer symmetrical structures: effect of magnetostrictive layer thickness publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2025.116522 – volume: 55 start-page: 1 issue: 7 year: 2019 ident: 10.1016/j.sna.2025.117231_bib20 article-title: Magnetostrictive energy harvesting: materials and design study publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2019.2891118 – volume: 118 start-page: 287 year: 2016 ident: 10.1016/j.sna.2025.117231_bib23 article-title: A portable high-efficiency electromagnetic energy harvesting system using supercapacitors for renewable energy applications in railroads publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.04.012 – volume: 28 start-page: 421 issue: 3 year: 2016 ident: 10.1016/j.sna.2025.117231_bib31 article-title: Influence of electrical impedance and mechanical bistability on galfenol-based unimorph harvesters publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X16666176 – volume: 10 issue: 10 year: 2022 ident: 10.1016/j.sna.2025.117231_bib48 article-title: Design and characteristic analysis of magnetostrictive vibration harvester with double-stage rhombus amplification mechanism publication-title: Machines doi: 10.3390/machines10100848 – volume: 260 year: 2020 ident: 10.1016/j.sna.2025.117231_bib14 article-title: Electromagnetic energy harvesting using magnetic levitation architectures: a review publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.114191 – volume: 111 start-page: 2229 issue: 11 year: 2014 ident: 10.1016/j.sna.2025.117231_bib16 article-title: Magnetostrictive particle based biosensors for in situ and real-time detection of pathogens in water publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.25279 |
| SSID | ssj0003377 |
| Score | 2.4771497 |
| Snippet | Electromagnetic vibration energy harvesters are widely explored as low-cost and robust solutions for powering wireless and low-power electronics. Based on... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 117231 |
| SubjectTerms | Actuator Energy harvesting Finite element modelling Magnetostriction Resonator |
| Title | Design and optimization of a compact rectangular galfenol-based magnetostrictive energy harvester |
| URI | https://dx.doi.org/10.1016/j.sna.2025.117231 |
| Volume | 396 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database issn: 0924-4247 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0003377 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKxgM8oPElBgz5gScqR4nj1PFjgU6jQhPS-tC3yHYc2EeTquuqiSf-dO7iJMs6kACJlyiyaqfy_XQ-393vjpC3qQk13BsEi0cyZ8JGOdNSRkwl0ogoNYngvtmEPD5O53P1ZTD40XJhNheyLNPra7X8r6KGMRA2Umf_QtzdojAA7yB0eILY4flHgv9Y52TUQYEK9MGiIVo2RMjKsyJRz6GnEnNQ4YwoXFldMDzR8uFCfy3dusJ-HrUuHDpPD_ymV5u6rELfnj2BWzC266lLviIXBZv3BMNxUDfVQQAEXYYPEmj0Vh49DGOo_n28cN_Z0RVcBXIfCkJPfecqQM8A--x_uPQu72kw7a280qf1tEnpzqu-I4MnmBTieZbeu3aHYePdlFwwwX1VzlZjx74J7h3t7x0RZ8FliRWleIIRad4cMreLap_gurgsWIDIlBT3yC6XiQK9uDv-NJlPu9M8juvund3_aCPjdY7g1od-bdv07JXZHnnUXDTo2APkMRm48gl52Cs_-ZRoDxUKgqF9qNCqoJo2UKE9qNDbUKHbUKEeKrSDyjMyO5zMPhyxpuUGs0pEzI3kyEkTaa1NaMPYxKM813gQJUqnupDKasU5Bvp55JRNuUlMFKY5t4JrUPXPyU5Zle4FoZyHJiqUlQWYuM4ao3UOCqOIEou97Yp98q7dq2zpC6tkbcbhWQYbm-HGZn5j94lodzNrLENv8WUg-t9Pe_lv016RBzf4fE121qsrd0Du28369HL1pgHIT0QwiPo |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+optimization+of+a+compact+rectangular+galfenol-based+magnetostrictive+energy+harvester&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Gandia%2C+David&rft.au=G%C3%B3mez-Hurtado%2C+Jorge&rft.au=Beato-L%C3%B3pez%2C+J.J.&rft.au=Garaio%2C+Eneko&rft.date=2025-12-16&rft.pub=Elsevier+B.V&rft.issn=0924-4247&rft.volume=396&rft_id=info:doi/10.1016%2Fj.sna.2025.117231&rft.externalDocID=S0924424725010374 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon |