Text-to-Image Generator Web Application Using React.js and Node.js for Dynamic Image Creation and Storage

The field of generative artificial intelligence has experienced tremendous growth with the advent of deep learning-based text-to-image models, revolutionizing how machines interpret and visualize human language. This paper presents a comprehensive overview of a full-stack web-based application desig...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International Journal of Innovative Research in Computer Science and Technology Ročník 13; číslo 3; s. 73 - 75
Hlavní autoři: Rauf, Pervez, Khan, Md Wasim, Shafi, Md Abar, Sahil, Md, Shamim, Md Shahbaz
Médium: Journal Article
Jazyk:angličtina
Vydáno: 01.05.2025
ISSN:2347-5552, 2347-5552
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The field of generative artificial intelligence has experienced tremendous growth with the advent of deep learning-based text-to-image models, revolutionizing how machines interpret and visualize human language. This paper presents a comprehensive overview of a full-stack web-based application designed to harness this technology for practical and creative use. The application tries facilitating the generation of images from text descriptions by integrating frontend and backend technologies offering a smooth user experience and efficient performance. The system features a robust frontend built with React.js, enabling a dynamic and responsive user interface that supports real-time interactions. Tailwind CSS is well-used to ensure a consistent, mobile-first design framework that adapts onto various screen sizes and devices. On the backend, the application utilizes Node.js with the Express.js framework to look on server-side logic, route handling, and communication with external services. RESTful APIs bridge the frontend and backend, allowing clean and scalable request handling between the client and the server. For media management, the application incorporates Multer, a middleware for handling multipart/form-data, which is primarily used for uploading files. This enables users not only to generate new images from text prompts but also to upload existing images for display or further analysis. A gallery interface is provided, allowing users to browse previously generated content, encouraging exploration, creativity, and reuse of past results. Central to the system is the integration of a pre-trained deep learning-based image generation model, capable of translating natural language prompts into high-quality, photorealistic, or stylized images. This model leverages state-of-the-art transformer architectures and diffusion techniques, ensuring accuracy and fidelity in the visual output. The system supports a variety of prompt types, including descriptive, abstract, and conceptual input, expanding its applicability across domains such as art, education, entertainment, and marketing. Extensive testing and evaluation of the platform confirm its effectiveness in delivering real-time image generation with low latency and minimal resource overhead. The application also demonstrates strong user interactivity features, such as prompt history, loading indicators, and error handling for invalid input. Backend optimizations and asynchronous data handling ensure that large image files are processed efficiently without degrading the user experience.
AbstractList The field of generative artificial intelligence has experienced tremendous growth with the advent of deep learning-based text-to-image models, revolutionizing how machines interpret and visualize human language. This paper presents a comprehensive overview of a full-stack web-based application designed to harness this technology for practical and creative use. The application tries facilitating the generation of images from text descriptions by integrating frontend and backend technologies offering a smooth user experience and efficient performance. The system features a robust frontend built with React.js, enabling a dynamic and responsive user interface that supports real-time interactions. Tailwind CSS is well-used to ensure a consistent, mobile-first design framework that adapts onto various screen sizes and devices. On the backend, the application utilizes Node.js with the Express.js framework to look on server-side logic, route handling, and communication with external services. RESTful APIs bridge the frontend and backend, allowing clean and scalable request handling between the client and the server. For media management, the application incorporates Multer, a middleware for handling multipart/form-data, which is primarily used for uploading files. This enables users not only to generate new images from text prompts but also to upload existing images for display or further analysis. A gallery interface is provided, allowing users to browse previously generated content, encouraging exploration, creativity, and reuse of past results. Central to the system is the integration of a pre-trained deep learning-based image generation model, capable of translating natural language prompts into high-quality, photorealistic, or stylized images. This model leverages state-of-the-art transformer architectures and diffusion techniques, ensuring accuracy and fidelity in the visual output. The system supports a variety of prompt types, including descriptive, abstract, and conceptual input, expanding its applicability across domains such as art, education, entertainment, and marketing. Extensive testing and evaluation of the platform confirm its effectiveness in delivering real-time image generation with low latency and minimal resource overhead. The application also demonstrates strong user interactivity features, such as prompt history, loading indicators, and error handling for invalid input. Backend optimizations and asynchronous data handling ensure that large image files are processed efficiently without degrading the user experience.
Author Shafi, Md Abar
Khan, Md Wasim
Shamim, Md Shahbaz
Rauf, Pervez
Sahil, Md
Author_xml – sequence: 1
  givenname: Pervez
  surname: Rauf
  fullname: Rauf, Pervez
– sequence: 2
  givenname: Md Wasim
  surname: Khan
  fullname: Khan, Md Wasim
– sequence: 3
  givenname: Md Abar
  surname: Shafi
  fullname: Shafi, Md Abar
– sequence: 4
  givenname: Md
  surname: Sahil
  fullname: Sahil, Md
– sequence: 5
  givenname: Md Shahbaz
  surname: Shamim
  fullname: Shamim, Md Shahbaz
BookMark eNpNkNFKwzAUhoMoOOceQcgLtDY5SdtcjqlzMBR04mVIk5ORsbUj6YV7e1u3C6_Oz893vov_jly3XYuEPLAil1Jy8Rh2IdrU57zgMmeQQ874FZlwEFU2Etf_8i2ZpRSaQkhgNVNqQsIGf_qs77LVwWyRLrHFaPou0m9s6Px43Adr-tC19CuFdks_0Ng-3yVqWkffOodj9gP-dGrNIVh61iwinr9G7HPQDeU9ufFmn3B2uVOyeXneLF6z9ftytZivM6uAZ1gzbJzjXLpSeCU9sFIpXzfKexBWQOFUXUnhmqpGbmTVsLKuOAAXQ1d6mBJ51trYpRTR62MMBxNPmhX6bzF9WUyPi2kGGjTj8Aue8GL0
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.55524/ijircst.2025.13.3.12
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2347-5552
EndPage 75
ExternalDocumentID 10_55524_ijircst_2025_13_3_12
GroupedDBID AAYXX
ADWVC
CITATION
ID FETCH-LOGICAL-c932-e81ebdd225d64f95f31699f8b9ff34c430d98754db78e2a57b1687233244db6f3
ISSN 2347-5552
IngestDate Sat Nov 29 07:47:11 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c932-e81ebdd225d64f95f31699f8b9ff34c430d98754db78e2a57b1687233244db6f3
OpenAccessLink https://ijircst.org/DOC/12-Text-to-Image-Generator-Web-Application-Using-React-js-and-Node-js-for-Dynamic-Image-Creation-and-Storage.pdf
PageCount 3
ParticipantIDs crossref_primary_10_55524_ijircst_2025_13_3_12
PublicationCentury 2000
PublicationDate 2025-5-00
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-5-00
PublicationDecade 2020
PublicationTitle International Journal of Innovative Research in Computer Science and Technology
PublicationYear 2025
SSID ssib045318199
ssib025324101
Score 1.9069895
Snippet The field of generative artificial intelligence has experienced tremendous growth with the advent of deep learning-based text-to-image models, revolutionizing...
SourceID crossref
SourceType Index Database
StartPage 73
Title Text-to-Image Generator Web Application Using React.js and Node.js for Dynamic Image Creation and Storage
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2347-5552
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib025324101
  issn: 2347-5552
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5FhQMXBALEW3vgFjnE-7C9x6oUUYlGqES0N2vt3VWNqFMlaVRx4O_yN5j1rLdOWyF64GJZm2TkeD7NS9_MEPKuNrzWGpIcpq2CBEWnSWV0laSuyGpI3hTrlsF8-5zPZsXJifoyGv3ue2E2P_K2LS4v1fl_VTWcgbJ96-wd1B2FwgHcg9LhCmqH678p3uey60VycObpODhWGhLr8bGtMObEIt0YyQJHYBIhOsVJzbOFsf7eUw8_4Kr6MYrZ62PLjukJ4vQ2h-hmYTFEuQdh6-rGRpIfNhriMoloW7zcm2X-I33hkEW83Nif0TmcYtX20IyP9ao5i1WiU-2a8MFupSPt-Kvf14DnwyIHk1eUQrSFjIs8kRKH3U7sLWe9MecD0PKBZcaFKcHH47KW697DyxKg3uZ7s6xXnmjL5CTlEz4JTO-tad3XvGjkNkJW1Qkqg5jSiylTXvLSb8O-x3KpPPfw8Nd-b_iYhLA2nUZDK8AwFrj7NP5J7D7rJL-_7QEHcdUgQJo_Ig-DzukuIvIxGdn2CWm20EgjGimgkQ7QSDs00h6NFOBAAxopoJEGNFIU06Ox-1pA41My_7g_3_uUhO0eSQ05Q2KL1FbGgDsxmXBKOp5mSrmiUs5xUQs-NQpyaWGqvLBMy7xKsyJnHN6U8K2j_BnZaRetfU4oJImpMVOpHcSadc0ro5hwVuSFzFzFsxdk0r-a8hxnuJR_1dLLu_7gFXlwhdrXZGe9vLBvyP16s25Wy7edrv8AGQ-Y1w
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Text-to-Image+Generator+Web+Application+Using+React.js+and+Node.js+for+Dynamic+Image+Creation+and+Storage&rft.jtitle=International+Journal+of+Innovative+Research+in+Computer+Science+and+Technology&rft.au=Rauf%2C+Pervez&rft.au=Khan%2C+Md+Wasim&rft.au=Shafi%2C+Md+Abar&rft.au=Sahil%2C+Md&rft.date=2025-05-01&rft.issn=2347-5552&rft.eissn=2347-5552&rft.volume=13&rft.issue=3&rft.spage=73&rft.epage=75&rft_id=info:doi/10.55524%2Fijircst.2025.13.3.12&rft.externalDBID=n%2Fa&rft.externalDocID=10_55524_ijircst_2025_13_3_12
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2347-5552&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2347-5552&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2347-5552&client=summon