Hybrid Ant Colony-Particle Swarm Optimization for Dynamic Resource Allocation in Cloud Data Centers
Effective use of computational resources is a very challenging issue in cloud data centres as demands from users are very high. However, classical optimization methods are often not able to cope with changing workloads, which means they can yield to inefficient decisions. A Hybrid Optimization Algor...
Uložené v:
| Vydané v: | Journal of Al-Qadisiyah for Computer Science and Mathematics Ročník 17; číslo 3 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
30.09.2025
|
| ISSN: | 2074-0204, 2521-3504 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Effective use of computational resources is a very challenging issue in cloud data centres as demands from users are very high. However, classical optimization methods are often not able to cope with changing workloads, which means they can yield to inefficient decisions. A Hybrid Optimization Algorithm based on PSO Ant Colony algorithm hybrid PSO–ACO is presented in this paper for the purpose of optimizing resource allocation efficiency in cloud environment. In this hybrid model, the heuristic search ability of ACO and exploitative nature of PSO is synergized to deliver the best heuristics to meet the demands of dynamic resource provisioning with minimum energy consumption, reduced SLA violation and improved load balancing. The results supported that the hybrid PSO–ACO algorithm achieves the highest resource efficiency with reduces execution time and SLA violations, balances load effectively and reaches optimal solutions quickly and stably and this means that the hybrid ACO-PSO approach clearly outperforms both ACO and PSO individually in all performance indicators, making it the best choice for dynamic cloud computing systems. |
|---|---|
| AbstractList | Effective use of computational resources is a very challenging issue in cloud data centres as demands from users are very high. However, classical optimization methods are often not able to cope with changing workloads, which means they can yield to inefficient decisions. A Hybrid Optimization Algorithm based on PSO Ant Colony algorithm hybrid PSO–ACO is presented in this paper for the purpose of optimizing resource allocation efficiency in cloud environment. In this hybrid model, the heuristic search ability of ACO and exploitative nature of PSO is synergized to deliver the best heuristics to meet the demands of dynamic resource provisioning with minimum energy consumption, reduced SLA violation and improved load balancing. The results supported that the hybrid PSO–ACO algorithm achieves the highest resource efficiency with reduces execution time and SLA violations, balances load effectively and reaches optimal solutions quickly and stably and this means that the hybrid ACO-PSO approach clearly outperforms both ACO and PSO individually in all performance indicators, making it the best choice for dynamic cloud computing systems. |
| Author | Abdulrazzak Ahmed, Hiba |
| Author_xml | – sequence: 1 givenname: Hiba surname: Abdulrazzak Ahmed fullname: Abdulrazzak Ahmed, Hiba |
| BookMark | eNot0N1KwzAYBuAgE5xzd-BBbqA1v21yODp1wmCiOw9pmkCkTWbSIfXq3Y9H3wvfy3vw3INZiMEC8IhRSSRF7Onr2-ShJIjwEtclJbQWN2BOOMEF5YjNThnVrEAEsTuwzNm3iLGaY1mhOTCbqU2-g6swwib2MUzFu06jN72Fnz86DXB3GP3gf_XoY4AuJriegh68gR82x2MyFq76Pprr3wfY9PHYwbUeNWxsGG3KD-DW6T7b5f9dgP3L877ZFNvd61uz2hZGYlHUBjPbSoQk5sZKqVvrhCZYmEoTWlHBKudOTeuIrjsmuOS8xVZQ1tGWCE0XgF1nTYo5J-vUIflBp0lhpC5U6kKlzlQK1-pCRf8AmExglA |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.29304/jqcsm.2025.17.32378 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2521-3504 |
| ExternalDocumentID | 10_29304_jqcsm_2025_17_32378 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION OK1 |
| ID | FETCH-LOGICAL-c918-7c14eb900915ce99abef8a218c6a2363846ffc91ef2a7d485955b1e834d3b28a3 |
| ISSN | 2074-0204 |
| IngestDate | Wed Oct 29 21:08:31 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Issue | 3 |
| Language | English |
| License | http://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c918-7c14eb900915ce99abef8a218c6a2363846ffc91ef2a7d485955b1e834d3b28a3 |
| OpenAccessLink | https://jqcsm.qu.edu.iq/index.php/journalcm/article/download/2378/1093 |
| ParticipantIDs | crossref_primary_10_29304_jqcsm_2025_17_32378 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-30 |
| PublicationDateYYYYMMDD | 2025-09-30 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of Al-Qadisiyah for Computer Science and Mathematics |
| PublicationYear | 2025 |
| SSID | ssib044751960 ssib016479590 ssib032177102 ssib046619541 |
| Score | 1.9230548 |
| Snippet | Effective use of computational resources is a very challenging issue in cloud data centres as demands from users are very high. However, classical optimization... |
| SourceID | crossref |
| SourceType | Index Database |
| Title | Hybrid Ant Colony-Particle Swarm Optimization for Dynamic Resource Allocation in Cloud Data Centers |
| Volume | 17 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2521-3504 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044751960 issn: 2074-0204 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbK4MBlGgIEDJAP3CqPJrbr-FiNTb0whuhht8h2HC0izUZ_jK0H_nae7TgNU4XYgYtVudZr2vfp82f3_UDog-Y6o1RLQscjRgAUBVGScRiEZUzIkTGlbzYhzs6yiwt5PhhsYi7MTS2aJru9ldf_1dUwB852qbMPcHdnFCbgNTgdRnA7jP_k-OmdS8JyVQHcrQAc7sl5u2r47adazIdfgCXmbfqljzL8FLrSd1f5w0nttrgYBnlcX60LgMdK-bvgNmR-l6KtyVdVVMvqTl16w7FlRMcgIaojFort5PxEF-t6oTYb9X04uZyH-9dppVX_TiLlMYAiUlfqojxd2m3YZcIcCAVCeTsXuVf0MEZ3UTrIkRFznP7DLF3lgJQfJeKIpjR0_vmzgva9na2LN4STjreTeyu5s5InIvdWHqHHqeDSMeLnXyeRi1yZNcm3_yBSOLqJXqk1VycRyKt7n4HOkdw3Su2-fMjU9B_8ccfj95RQT9LMDtB-6zk8Ceh4hga2eY5MwA8G_OB7-MEeP7iPHwxuxi1-cMQP3uIHVw32-MEOP7jFzws0Oz2ZHU9J24mDGJlkRJiEWS1BjifcWCmVtmWmQByasUopMDgblyWstGWqRMFcyTyuE5tRVlCdZoq-RHvNVWNfIeyaJhqTlUKAFrYiU1rCiVeNS1UwzYx5jUj8UfLrUG8l_5v33jxw_SF6ugXsW7S3WqztO_TE3Kyq5eK9h8BvChh3Bw |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Ant+Colony-Particle+Swarm+Optimization+for+Dynamic+Resource+Allocation+in+Cloud+Data+Centers&rft.jtitle=Journal+of+Al-Qadisiyah+for+Computer+Science+and+Mathematics&rft.au=Abdulrazzak+Ahmed%2C+Hiba&rft.date=2025-09-30&rft.issn=2074-0204&rft.eissn=2521-3504&rft.volume=17&rft.issue=3&rft_id=info:doi/10.29304%2Fjqcsm.2025.17.32378&rft.externalDBID=n%2Fa&rft.externalDocID=10_29304_jqcsm_2025_17_32378 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2074-0204&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2074-0204&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2074-0204&client=summon |