A vector method for finding sequences in big data
A technological software solution is proposed for metric search and identification of logical-temporal patterns of a business data flow by creating additional vector data structures and a parallel method for their processing. The subject of research is the methods of searching and identifying logica...
Uložené v:
| Vydané v: | Сучасні інформаційні системи Ročník 6; číslo 3; s. 13 - 22 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
14.09.2022
|
| ISSN: | 2522-9052 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | A technological software solution is proposed for metric search and identification of logical-temporal patterns of a business data flow by creating additional vector data structures and a parallel method for their processing. The subject of research is the methods of searching and identifying logical-temporal patterns in big data. The purpose of the study is to increase the efficiency of searching and recognizing logical-temporal patterns that semantically form business functionality in an 8-hour frame of screenshots with "garbage" data. Applied methods: apparatus of set theory and Boolean algebra, metric models for determining parameters for sets of binary vectors, elements of probability theory, theory of algorithms, software modeling. The results obtained: a method for searching and recognizing patterns based on a vector problem of character sequences that identify patterns in big data streams using unitary coding of information primitives and data; vector models are unitary-encoded data structures for describing a big data flow as Cartesian products of a set of primitive-string-markers and a discrete sequence of implementation of a given time frame. The practical significance of the work: the implementation of the vector method, which made it possible to create a pattern recognition program in a big data stream with a probability of 0.77%. |
|---|---|
| AbstractList | A technological software solution is proposed for metric search and identification of logical-temporal patterns of a business data flow by creating additional vector data structures and a parallel method for their processing. The subject of research is the methods of searching and identifying logical-temporal patterns in big data. The purpose of the study is to increase the efficiency of searching and recognizing logical-temporal patterns that semantically form business functionality in an 8-hour frame of screenshots with "garbage" data. Applied methods: apparatus of set theory and Boolean algebra, metric models for determining parameters for sets of binary vectors, elements of probability theory, theory of algorithms, software modeling. The results obtained: a method for searching and recognizing patterns based on a vector problem of character sequences that identify patterns in big data streams using unitary coding of information primitives and data; vector models are unitary-encoded data structures for describing a big data flow as Cartesian products of a set of primitive-string-markers and a discrete sequence of implementation of a given time frame. The practical significance of the work: the implementation of the vector method, which made it possible to create a pattern recognition program in a big data stream with a probability of 0.77%. |
| Author | Khakhanova, Hanna |
| Author_xml | – sequence: 1 givenname: Hanna surname: Khakhanova fullname: Khakhanova, Hanna |
| BookMark | eNo9j81OwzAQhH0oEqX0DTj4BRLW6zjNHquKP6kSl94t21mXIOpAHJB4exJAPc3MdxjpuxKL1CcW4kZBiUDU3KJBLAgMThux1CXgQizP9FKsc34FACSFqqalUFv5xWHsB3ni8aVvZZxq7FLbpaPM_PHJKXCWXZK-O8rWje5aXET3lnn9nytxuL877B6L_fPD0267L8L0XQQOnhi53tQbBDDKYUNExqNzyoSKGiDlo3YTUVUEZ4KrooltrLR3pPRKVH-3YehzHjja96E7ueHbKrC_snbWsrOWnWWttoD6BwG0Sd0 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.20998/2522-9052.2022.3.02 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| EndPage | 22 |
| ExternalDocumentID | 10_20998_2522_9052_2022_3_02 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ |
| ID | FETCH-LOGICAL-c912-cecb9e2e676720051a289995b2aa15c498091bf3a5b214f0a5ca4f5fdf43ba913 |
| ISSN | 2522-9052 |
| IngestDate | Sat Nov 29 02:13:07 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c912-cecb9e2e676720051a289995b2aa15c498091bf3a5b214f0a5ca4f5fdf43ba913 |
| OpenAccessLink | http://ais.khpi.edu.ua/article/download/263964/260163 |
| PageCount | 10 |
| ParticipantIDs | crossref_primary_10_20998_2522_9052_2022_3_02 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-14 |
| PublicationDateYYYYMMDD | 2022-09-14 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-14 day: 14 |
| PublicationDecade | 2020 |
| PublicationTitle | Сучасні інформаційні системи |
| PublicationYear | 2022 |
| SSID | ssj0002912169 |
| Score | 2.1943731 |
| Snippet | A technological software solution is proposed for metric search and identification of logical-temporal patterns of a business data flow by creating additional... |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 13 |
| Title | A vector method for finding sequences in big data |
| Volume | 6 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 2522-9052 databaseCode: DOA dateStart: 20170101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: false ssIdentifier: ssj0002912169 providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZWhQMXVASIR0E-sKeVl_gVx8elW4SEVHHYQ2_RxEnoChSqtqz6l_iXzNhJNhSE6IGLdzTyfnnMyPOIx8PYGxRkHawFUetGC-NaLwpoa1H7JgOnay3zNjabcKenxdmZ_zSb_RhqYXZfXdcVNzf-4r-KGnkobCqdvYO4R1BkII1CxxHFjuM_CX612MVMfN8cOu4jjF-mKXEwbJymNEe1_bzoS9NG_3S-zuYrOV_LeaHj6IjzLou0jPSaaJ8v0s-eVZhIn0Q6i_Tx5M_5ZL7_DajHLgYaRxU5dgI07rr9eA5fzoHauUbLCV1qAT5kLzDwpe4LZr_IKfT_hM_sLytyPlE8PVldU9Vqb6dTOfNtC0CVwFTWMOIu6apLvczU3uINX_lvGcJxeyIGRhGnJJSSUEpCKXVJx5beU856P4neyegrL5WMDRTHK6dCzQj09g-3M3GEJh7N5pA97EMRvkoq9IjNmu4xkyue1Icn9eGoPrxXHz6qD992HNWHk_o8YZv3J5vjD6JvqyEC3qQITah8oxo6qY9SihIo5va2UgDSBuMLdCGrVgNypGkzsAFMa9u6NboCL_VTdtB965pnjMsih6YydfC5MjUYnAfgsrzSLlTGwXMmhkcsL9LhKeXf3u2LO85_yR7sdeqIHVxffm9esfthd729unwdBfQTvidMNA |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+vector+method+for+finding+sequences+in+big+data&rft.jtitle=%D0%A1%D1%83%D1%87%D0%B0%D1%81%D0%BD%D1%96+%D1%96%D0%BD%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D1%86%D1%96%D0%B9%D0%BD%D1%96+%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B8&rft.au=Khakhanova%2C+Hanna&rft.date=2022-09-14&rft.issn=2522-9052&rft.volume=6&rft.issue=3&rft.spage=13&rft.epage=22&rft_id=info:doi/10.20998%2F2522-9052.2022.3.02&rft.externalDBID=n%2Fa&rft.externalDocID=10_20998_2522_9052_2022_3_02 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2522-9052&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2522-9052&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2522-9052&client=summon |