A vector method for finding sequences in big data

A technological software solution is proposed for metric search and identification of logical-temporal patterns of a business data flow by creating additional vector data structures and a parallel method for their processing. The subject of research is the methods of searching and identifying logica...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Сучасні інформаційні системи Ročník 6; číslo 3; s. 13 - 22
Hlavný autor: Khakhanova, Hanna
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: 14.09.2022
ISSN:2522-9052
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A technological software solution is proposed for metric search and identification of logical-temporal patterns of a business data flow by creating additional vector data structures and a parallel method for their processing. The subject of research is the methods of searching and identifying logical-temporal patterns in big data. The purpose of the study is to increase the efficiency of searching and recognizing logical-temporal patterns that semantically form business functionality in an 8-hour frame of screenshots with "garbage" data. Applied methods: apparatus of set theory and Boolean algebra, metric models for determining parameters for sets of binary vectors, elements of probability theory, theory of algorithms, software modeling. The results obtained: a method for searching and recognizing patterns based on a vector problem of character sequences that identify patterns in big data streams using unitary coding of information primitives and data; vector models are unitary-encoded data structures for describing a big data flow as Cartesian products of a set of primitive-string-markers and a discrete sequence of implementation of a given time frame. The practical significance of the work: the implementation of the vector method, which made it possible to create a pattern recognition program in a big data stream with a probability of 0.77%.
AbstractList A technological software solution is proposed for metric search and identification of logical-temporal patterns of a business data flow by creating additional vector data structures and a parallel method for their processing. The subject of research is the methods of searching and identifying logical-temporal patterns in big data. The purpose of the study is to increase the efficiency of searching and recognizing logical-temporal patterns that semantically form business functionality in an 8-hour frame of screenshots with "garbage" data. Applied methods: apparatus of set theory and Boolean algebra, metric models for determining parameters for sets of binary vectors, elements of probability theory, theory of algorithms, software modeling. The results obtained: a method for searching and recognizing patterns based on a vector problem of character sequences that identify patterns in big data streams using unitary coding of information primitives and data; vector models are unitary-encoded data structures for describing a big data flow as Cartesian products of a set of primitive-string-markers and a discrete sequence of implementation of a given time frame. The practical significance of the work: the implementation of the vector method, which made it possible to create a pattern recognition program in a big data stream with a probability of 0.77%.
Author Khakhanova, Hanna
Author_xml – sequence: 1
  givenname: Hanna
  surname: Khakhanova
  fullname: Khakhanova, Hanna
BookMark eNo9j81OwzAQhH0oEqX0DTj4BRLW6zjNHquKP6kSl94t21mXIOpAHJB4exJAPc3MdxjpuxKL1CcW4kZBiUDU3KJBLAgMThux1CXgQizP9FKsc34FACSFqqalUFv5xWHsB3ni8aVvZZxq7FLbpaPM_PHJKXCWXZK-O8rWje5aXET3lnn9nytxuL877B6L_fPD0267L8L0XQQOnhi53tQbBDDKYUNExqNzyoSKGiDlo3YTUVUEZ4KrooltrLR3pPRKVH-3YehzHjja96E7ueHbKrC_snbWsrOWnWWttoD6BwG0Sd0
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.20998/2522-9052.2022.3.02
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EndPage 22
ExternalDocumentID 10_20998_2522_9052_2022_3_02
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c912-cecb9e2e676720051a289995b2aa15c498091bf3a5b214f0a5ca4f5fdf43ba913
ISSN 2522-9052
IngestDate Sat Nov 29 02:13:07 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c912-cecb9e2e676720051a289995b2aa15c498091bf3a5b214f0a5ca4f5fdf43ba913
OpenAccessLink http://ais.khpi.edu.ua/article/download/263964/260163
PageCount 10
ParticipantIDs crossref_primary_10_20998_2522_9052_2022_3_02
PublicationCentury 2000
PublicationDate 2022-09-14
PublicationDateYYYYMMDD 2022-09-14
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-14
  day: 14
PublicationDecade 2020
PublicationTitle Сучасні інформаційні системи
PublicationYear 2022
SSID ssj0002912169
Score 2.1943731
Snippet A technological software solution is proposed for metric search and identification of logical-temporal patterns of a business data flow by creating additional...
SourceID crossref
SourceType Index Database
StartPage 13
Title A vector method for finding sequences in big data
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 2522-9052
  databaseCode: DOA
  dateStart: 20170101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0002912169
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZWhQMXVASIR0E-sKeVl_gVx8elW4SEVHHYQ2_RxEnoChSqtqz6l_iXzNhJNhSE6IGLdzTyfnnMyPOIx8PYGxRkHawFUetGC-NaLwpoa1H7JgOnay3zNjabcKenxdmZ_zSb_RhqYXZfXdcVNzf-4r-KGnkobCqdvYO4R1BkII1CxxHFjuM_CX612MVMfN8cOu4jjF-mKXEwbJymNEe1_bzoS9NG_3S-zuYrOV_LeaHj6IjzLou0jPSaaJ8v0s-eVZhIn0Q6i_Tx5M_5ZL7_DajHLgYaRxU5dgI07rr9eA5fzoHauUbLCV1qAT5kLzDwpe4LZr_IKfT_hM_sLytyPlE8PVldU9Vqb6dTOfNtC0CVwFTWMOIu6apLvczU3uINX_lvGcJxeyIGRhGnJJSSUEpCKXVJx5beU856P4neyegrL5WMDRTHK6dCzQj09g-3M3GEJh7N5pA97EMRvkoq9IjNmu4xkyue1Icn9eGoPrxXHz6qD992HNWHk_o8YZv3J5vjD6JvqyEC3qQITah8oxo6qY9SihIo5va2UgDSBuMLdCGrVgNypGkzsAFMa9u6NboCL_VTdtB965pnjMsih6YydfC5MjUYnAfgsrzSLlTGwXMmhkcsL9LhKeXf3u2LO85_yR7sdeqIHVxffm9esfthd729unwdBfQTvidMNA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+vector+method+for+finding+sequences+in+big+data&rft.jtitle=%D0%A1%D1%83%D1%87%D0%B0%D1%81%D0%BD%D1%96+%D1%96%D0%BD%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D1%86%D1%96%D0%B9%D0%BD%D1%96+%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B8&rft.au=Khakhanova%2C+Hanna&rft.date=2022-09-14&rft.issn=2522-9052&rft.volume=6&rft.issue=3&rft.spage=13&rft.epage=22&rft_id=info:doi/10.20998%2F2522-9052.2022.3.02&rft.externalDBID=n%2Fa&rft.externalDocID=10_20998_2522_9052_2022_3_02
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2522-9052&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2522-9052&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2522-9052&client=summon