On the Development of an Empirical Model for Carcinomic Treatment using Chaotic Hyper-Heuristic Algorithm
A new dimension in the field of computational intelligence was introduced in the late nineties to comprehend a vivid combination of several multi-disciplinary areas. The coalescence biology along with data mining and statistical learning have given birth to Bioinformatics that provides various parad...
Uložené v:
| Vydané v: | International journal of innovative technology and exploring engineering Ročník 9; číslo 9; s. 34 - 43 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
30.07.2020
|
| ISSN: | 2278-3075, 2278-3075 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | A new dimension in the field of computational intelligence was introduced in the late nineties to comprehend a vivid combination of several multi-disciplinary areas. The coalescence biology along with data mining and statistical learning have given birth to Bioinformatics that provides various paradigms for studying the behaviour of unknown patterns at the micro level. In the present work, a recently developed human inspired optimization algorithm called search and rescue (SAR) optimization is employed with an improved version of parameters using Chaos theory. CSARO (Chaotic search and rescue optimization algorithm) unlike other existing algorithms has proven to be a better choice for optimising the gene selection mechanism as well as the control parameters of the learning model. This hyper heuristic algorithm obtained by the inclusion of chaos in SAR mainly aims at enhancement of its global search mobility and prevents from getting trapped in the local optimum. A comparative study with other existing techniques on seven benchmark datasets is performed. The performance of the algorithm is tested using evaluation metrics. |
|---|---|
| AbstractList | A new dimension in the field of computational intelligence was introduced in the late nineties to comprehend a vivid combination of several multi-disciplinary areas. The coalescence biology along with data mining and statistical learning have given birth to Bioinformatics that provides various paradigms for studying the behaviour of unknown patterns at the micro level. In the present work, a recently developed human inspired optimization algorithm called search and rescue (SAR) optimization is employed with an improved version of parameters using Chaos theory. CSARO (Chaotic search and rescue optimization algorithm) unlike other existing algorithms has proven to be a better choice for optimising the gene selection mechanism as well as the control parameters of the learning model. This hyper heuristic algorithm obtained by the inclusion of chaos in SAR mainly aims at enhancement of its global search mobility and prevents from getting trapped in the local optimum. A comparative study with other existing techniques on seven benchmark datasets is performed. The performance of the algorithm is tested using evaluation metrics. |
| Author | Das, M. N. Vijayeeta, Prachi Mishra, B. S. P. |
| Author_xml | – sequence: 1 givenname: Prachi surname: Vijayeeta fullname: Vijayeeta, Prachi – sequence: 2 givenname: M. N. surname: Das fullname: Das, M. N. – sequence: 3 givenname: B. S. P. surname: Mishra fullname: Mishra, B. S. P. |
| BookMark | eNpNkL1OwzAUhS1UJErpGzD4BVJuYjs_YxUKQSrq0j26ca5bV0kc2SlS3x5oGZjOj47O8D2y2eAGYuw5hpVQhYQXe7IT0apKcxAryIoigTs2T5IsjwRkavbPP7BlCCcAiIWM87SYM7sb-HQk_kpf1Lmxp2HiznAc-KYfrbcaO_7pWuq4cZ6X6LUdXG8133vC6To_BzsceHlEN_301WUkH1V09jb85nV3cN5Ox_6J3RvsAi3_dMH2b5t9WUXb3ftHud5GuoghktRolUOCBbQZKZ1pmRojlZRxiwoJcoFthga1NtTIJGkyTJVQmDYQ60aJBZO3W-1dCJ5MPXrbo7_UMdRXYPUNWH0FVt-AiW-_82Qj |
| ContentType | Journal Article |
| CorporateAuthor | Department of Computer Engineering, Kalinga Institute of Industrial Technology, [Deemed To Be University], Bhubaneswar, India |
| CorporateAuthor_xml | – name: Department of Computer Engineering, Kalinga Institute of Industrial Technology, [Deemed To Be University], Bhubaneswar, India |
| DBID | AAYXX CITATION |
| DOI | 10.35940/ijitee.H6803.079920 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2278-3075 |
| EndPage | 43 |
| ExternalDocumentID | 10_35940_ijitee_H6803_079920 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION M~E OK1 RNS |
| ID | FETCH-LOGICAL-c910-4ebc5802a90d7e5c7c46ff45441da5ae083ad7afaccfeb422b7a6535a6b01cb53 |
| ISSN | 2278-3075 |
| IngestDate | Sat Nov 29 03:49:00 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c910-4ebc5802a90d7e5c7c46ff45441da5ae083ad7afaccfeb422b7a6535a6b01cb53 |
| OpenAccessLink | https://doi.org/10.35940/ijitee.h6803.079920 |
| PageCount | 10 |
| ParticipantIDs | crossref_primary_10_35940_ijitee_H6803_079920 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-07-30 |
| PublicationDateYYYYMMDD | 2020-07-30 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of innovative technology and exploring engineering |
| PublicationYear | 2020 |
| SSID | ssj0001341869 |
| Score | 2.1131642 |
| Snippet | A new dimension in the field of computational intelligence was introduced in the late nineties to comprehend a vivid combination of several multi-disciplinary... |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 34 |
| Title | On the Development of an Empirical Model for Carcinomic Treatment using Chaotic Hyper-Heuristic Algorithm |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2278-3075 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001341869 issn: 2278-3075 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECbctEM7FH2iTR_g0E2QqgcpimNQpPBSJ0CNIptAUVStIJENxTbSJf-w_6lHUqYYIyiaoYtgEMLB9n0g747ffYfQpzrNat1wGcK-l4eEVDKsGKVhUsu0SSBCTxJhhk2w2aw4O-Onk8nvXS_M9oJ1XXF9zVf_1dWwBs7WrbP3cLczCgvwGZwOT3A7PP_J8SeWuOixgcxdfxccX65aKwiiB6CZvkXN95Ct6UwO5o5yvrFkgIVYajXXKWSqfThVG6vpHBxd_Fz27Xpx6ce1twuLt-Qo7NTVrQrWropvbiyUY_-pURNx5_8f7bn4pZQNbbWm0qIda-q2QB4Fs8jBpb1a9HaIdBR8j4LTyK9mQOqqy6TxuOnpzlxdD7M33eqOtWHX5h44ubcDD6VRe5ZbBaj9UyKjnGheZXsOUb2KpnmhZW4Z52k8noo7JsDeYekojJA8GTultVIaK6W18gA9TBnlmmH47cYr-UHEUJghi-4X2WZOY-jzHV_HC5a8qGf-DD0d0hV8ZGH2HE1U9wI98UQsX6L2pMMAOOwBDi8bLDrsAIcN4DAADo-Aww5w2AAOD4DDe4DDDnCv0Pzr8fzLNBwGeIQSotCQqErSIk4Fj2umqGSS5E1D9NS7WlChIPoXNRONkLJRFUnTiomcZlTkVZzIimav0UG37NQbhDMhmiSrSAEJNqFJVcCbsuJxwwhXGanfonD3R5UrK9NS_s1Dh_d8_x16PKL1PTpY9xv1AT2S23V71X80bv4DSCiQ0Q |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Development+of+an+Empirical+Model+for+Carcinomic+Treatment+using+Chaotic+Hyper-Heuristic+Algorithm&rft.jtitle=International+journal+of+innovative+technology+and+exploring+engineering&rft.au=Vijayeeta%2C+Prachi&rft.au=Das%2C+M.+N.&rft.au=Mishra%2C+B.+S.+P.&rft.date=2020-07-30&rft.issn=2278-3075&rft.eissn=2278-3075&rft.volume=9&rft.issue=9&rft.spage=34&rft.epage=43&rft_id=info:doi/10.35940%2Fijitee.H6803.079920&rft.externalDBID=n%2Fa&rft.externalDocID=10_35940_ijitee_H6803_079920 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2278-3075&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2278-3075&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2278-3075&client=summon |