MapReduce Based Crow Search Adopted Partitional Clustering Algorithms For Handling Large Scale Data
Cluster analysis is the prominent data mining technique in knowledge discovery and it discovers the hidden patterns from the data. The K-Means, K-Modes and K-Prototypes are partition based clustering algorithms and these algorithms select the initial centroids randomly. Because of its random selecti...
Saved in:
| Published in: | International journal of cognitive informatics & natural intelligence Vol. 15; no. 4 |
|---|---|
| Format: | Journal Article |
| Language: | English |
| Published: |
01.10.2021
|
| ISSN: | 1557-3958, 1557-3966 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Cluster analysis is the prominent data mining technique in knowledge discovery and it discovers the hidden patterns from the data. The K-Means, K-Modes and K-Prototypes are partition based clustering algorithms and these algorithms select the initial centroids randomly. Because of its random selection of initial centroids, these algorithms provide the local optima in solutions. To solve these issues, the strategy of Crow Search algorithm is employed with these algorithms to obtain the global optimum solution. With the advances in information technology, the size of data increased in a drastic manner from terabytes to petabytes. To make proposed algorithms suitable to handle these voluminous data, the phenomena of parallel implementation of these clustering algorithms with Hadoop Mapreduce framework. The proposed algorithms are experimented with large scale data and the results are compared in terms of cluster evaluation measures and computation time with the number of nodes. |
|---|---|
| AbstractList | Cluster analysis is the prominent data mining technique in knowledge discovery and it discovers the hidden patterns from the data. The K-Means, K-Modes and K-Prototypes are partition based clustering algorithms and these algorithms select the initial centroids randomly. Because of its random selection of initial centroids, these algorithms provide the local optima in solutions. To solve these issues, the strategy of Crow Search algorithm is employed with these algorithms to obtain the global optimum solution. With the advances in information technology, the size of data increased in a drastic manner from terabytes to petabytes. To make proposed algorithms suitable to handle these voluminous data, the phenomena of parallel implementation of these clustering algorithms with Hadoop Mapreduce framework. The proposed algorithms are experimented with large scale data and the results are compared in terms of cluster evaluation measures and computation time with the number of nodes. |
| BookMark | eNpNkMtOwkAYRicGEwF9AjfzAsW5dNrpEqtADV4i7JufmX-gpnTITInx7ZVgjKvvy1mcxRmRQec7JOSWs0nKuL6rnsrqpZoIJjhnjHvgxQUZcqXyRBZZNvj7Sl-RUYwfjCmlUj4k5hkO72iPBuk9RLS0DP6TrhCC2dGp9Yf-h71B6Ju-8R20tGyPscfQdFs6bbc-NP1uH-nMB7qAzrYnvoSwRboy0CJ9gB6uyaWDNuLN747Jeva4LhfJ8nVeldNlYnRRJLnWinPjRCpTK1AqUwDkRep4pgRYx3JtxUZtCiG00xlKjpo5dCqTLs8El2Miz1oTfIwBXX0IzR7CV81ZfcpUnzPV_zPJbyoDXaU |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.4018/IJCINI.20211001oa19 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1557-3966 |
| ExternalDocumentID | 10_4018_IJCINI_20211001oa19 |
| GroupedDBID | 0R~ 29J 4.4 5GY 8FE 8FG 8R4 8R5 AAYVP AAYXX ABBKS ABEPT ABIVO ABJQB ABPHS ABUWG ACAUS ACOJC ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS AMRTO ARAPS AZQEC BBNVY BDBYZ BENPR BGLVJ BHPHI BLRFH BPHCQ BTFVE BYHXH CBWLS CCPQU CDTDJ CIGCI CITATION CKMBR CNQXE COVLG CTSEY DWQXO EBS EJD GNUQQ H13 HCIFZ HZ~ IAO ICD IER IHR IPY ITC K6V K7- M7P MV1 NEEBM O9- P2P P62 PHGZM PHGZT PQGLB PQQKQ PROAC PSYQQ Q2X RIF XH6 |
| ID | FETCH-LOGICAL-c899-788511cf2434d2e35c9aa794f1652adf078d2b5b9228f86e31e80fef563f76213 |
| ISSN | 1557-3958 |
| IngestDate | Sat Nov 29 06:30:57 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c899-788511cf2434d2e35c9aa794f1652adf078d2b5b9228f86e31e80fef563f76213 |
| OpenAccessLink | https://doi.org/10.4018/ijcini.20211001oa19 |
| ParticipantIDs | crossref_primary_10_4018_IJCINI_20211001oa19 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-10-00 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-00 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of cognitive informatics & natural intelligence |
| PublicationYear | 2021 |
| SSID | ssj0055541 |
| Score | 2.1165059 |
| Snippet | Cluster analysis is the prominent data mining technique in knowledge discovery and it discovers the hidden patterns from the data. The K-Means, K-Modes and... |
| SourceID | crossref |
| SourceType | Index Database |
| Title | MapReduce Based Crow Search Adopted Partitional Clustering Algorithms For Handling Large Scale Data |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1557-3966 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0055541 issn: 1557-3958 databaseCode: M7P dateStart: 20130101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1557-3966 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0055541 issn: 1557-3958 databaseCode: K7- dateStart: 20130101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1557-3966 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0055541 issn: 1557-3958 databaseCode: BENPR dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swELYY42EvwDYQP8bkh71lgcaxm_gRqiEKW4WmauKtchIbkCCt2oL487mz3cQghMYDL1FlNdc236fz3fX8HSE_Eq4kl7wbZ9xkMQeI44IJE0PKrCBdELkruP37nQ0G-cWFPPcNmTM7TiCr6_zhQU7eFWpYA7Dx6Owb4G6MwgK8BtDhCrDD9b-A_6Mmf1GPVUdHsENVUQ8S7ch1FeNApQmGmOd4n68C9m7uUCzBlkduLsfT6_nV7Sw6Hk-jE1RgsKegsF0c3ABsJkCTuQoj2qclxUCIom1M8uKsVhAamWbFRK3YRysHGlYfWNL0sTUOU4CTkk5-fV-Ha26aSuNlRcAm_pLzhkwPDyT0T3v9QX8fPwz1ocbKu9QnUtnPtrCmsRBSGjQzckZGoZEP5CPLhMS2v7MsXuzWAsIpp6nrf4dTpkIjBy98kyB6CcKQ4TpZ9fkDPXS4fyZLuv5C1hazOah31V9J2dCAWhpQpAF1NKCeBjSgAW1pQFsaUKABXdCAWhpQSwOKNNggw-Nfw95J7AdqxCWk1dg4CuF1aRhPecV0KkqpFPhjk3QFU5WBaLFihSgkY7nJuzpNdN4x2ohuamDPTNJNslyPa71FaKJlpTsZOPeq4EWu8c9eraXqaFZWWWK2yc_FcxpNnGzK6BVsdt729l3yqeXiN7I8n97pPbJS3s-vZ9PvFt9HvERlCw |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MapReduce+Based+Crow+Search+Adopted+Partitional+Clustering+Algorithms+For+Handling+Large+Scale+Data&rft.jtitle=International+journal+of+cognitive+informatics+%26+natural+intelligence&rft.date=2021-10-01&rft.issn=1557-3958&rft.eissn=1557-3966&rft.volume=15&rft.issue=4&rft_id=info:doi/10.4018%2FIJCINI.20211001oa19&rft.externalDBID=n%2Fa&rft.externalDocID=10_4018_IJCINI_20211001oa19 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-3958&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-3958&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-3958&client=summon |