MapReduce Based Crow Search Adopted Partitional Clustering Algorithms For Handling Large Scale Data

Cluster analysis is the prominent data mining technique in knowledge discovery and it discovers the hidden patterns from the data. The K-Means, K-Modes and K-Prototypes are partition based clustering algorithms and these algorithms select the initial centroids randomly. Because of its random selecti...

Full description

Saved in:
Bibliographic Details
Published in:International journal of cognitive informatics & natural intelligence Vol. 15; no. 4
Format: Journal Article
Language:English
Published: 01.10.2021
ISSN:1557-3958, 1557-3966
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Cluster analysis is the prominent data mining technique in knowledge discovery and it discovers the hidden patterns from the data. The K-Means, K-Modes and K-Prototypes are partition based clustering algorithms and these algorithms select the initial centroids randomly. Because of its random selection of initial centroids, these algorithms provide the local optima in solutions. To solve these issues, the strategy of Crow Search algorithm is employed with these algorithms to obtain the global optimum solution. With the advances in information technology, the size of data increased in a drastic manner from terabytes to petabytes. To make proposed algorithms suitable to handle these voluminous data, the phenomena of parallel implementation of these clustering algorithms with Hadoop Mapreduce framework. The proposed algorithms are experimented with large scale data and the results are compared in terms of cluster evaluation measures and computation time with the number of nodes.
AbstractList Cluster analysis is the prominent data mining technique in knowledge discovery and it discovers the hidden patterns from the data. The K-Means, K-Modes and K-Prototypes are partition based clustering algorithms and these algorithms select the initial centroids randomly. Because of its random selection of initial centroids, these algorithms provide the local optima in solutions. To solve these issues, the strategy of Crow Search algorithm is employed with these algorithms to obtain the global optimum solution. With the advances in information technology, the size of data increased in a drastic manner from terabytes to petabytes. To make proposed algorithms suitable to handle these voluminous data, the phenomena of parallel implementation of these clustering algorithms with Hadoop Mapreduce framework. The proposed algorithms are experimented with large scale data and the results are compared in terms of cluster evaluation measures and computation time with the number of nodes.
BookMark eNpNkMtOwkAYRicGEwF9AjfzAsW5dNrpEqtADV4i7JufmX-gpnTITInx7ZVgjKvvy1mcxRmRQec7JOSWs0nKuL6rnsrqpZoIJjhnjHvgxQUZcqXyRBZZNvj7Sl-RUYwfjCmlUj4k5hkO72iPBuk9RLS0DP6TrhCC2dGp9Yf-h71B6Ju-8R20tGyPscfQdFs6bbc-NP1uH-nMB7qAzrYnvoSwRboy0CJ9gB6uyaWDNuLN747Jeva4LhfJ8nVeldNlYnRRJLnWinPjRCpTK1AqUwDkRep4pgRYx3JtxUZtCiG00xlKjpo5dCqTLs8El2Miz1oTfIwBXX0IzR7CV81ZfcpUnzPV_zPJbyoDXaU
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.4018/IJCINI.20211001oa19
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1557-3966
ExternalDocumentID 10_4018_IJCINI_20211001oa19
GroupedDBID 0R~
29J
4.4
5GY
8FE
8FG
8R4
8R5
AAYVP
AAYXX
ABBKS
ABEPT
ABIVO
ABJQB
ABPHS
ABUWG
ACAUS
ACOJC
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AMRTO
ARAPS
AZQEC
BBNVY
BDBYZ
BENPR
BGLVJ
BHPHI
BLRFH
BPHCQ
BTFVE
BYHXH
CBWLS
CCPQU
CDTDJ
CIGCI
CITATION
CKMBR
CNQXE
COVLG
CTSEY
DWQXO
EBS
EJD
GNUQQ
H13
HCIFZ
HZ~
IAO
ICD
IER
IHR
IPY
ITC
K6V
K7-
M7P
MV1
NEEBM
O9-
P2P
P62
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PSYQQ
Q2X
RIF
XH6
ID FETCH-LOGICAL-c899-788511cf2434d2e35c9aa794f1652adf078d2b5b9228f86e31e80fef563f76213
ISSN 1557-3958
IngestDate Sat Nov 29 06:30:57 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c899-788511cf2434d2e35c9aa794f1652adf078d2b5b9228f86e31e80fef563f76213
OpenAccessLink https://doi.org/10.4018/ijcini.20211001oa19
ParticipantIDs crossref_primary_10_4018_IJCINI_20211001oa19
PublicationCentury 2000
PublicationDate 2021-10-00
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-00
PublicationDecade 2020
PublicationTitle International journal of cognitive informatics & natural intelligence
PublicationYear 2021
SSID ssj0055541
Score 2.1165059
Snippet Cluster analysis is the prominent data mining technique in knowledge discovery and it discovers the hidden patterns from the data. The K-Means, K-Modes and...
SourceID crossref
SourceType Index Database
Title MapReduce Based Crow Search Adopted Partitional Clustering Algorithms For Handling Large Scale Data
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1557-3966
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0055541
  issn: 1557-3958
  databaseCode: M7P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1557-3966
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0055541
  issn: 1557-3958
  databaseCode: K7-
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1557-3966
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0055541
  issn: 1557-3958
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swELYY42EvwDYQP8bkh71lgcaxm_gRqiEKW4WmauKtchIbkCCt2oL487mz3cQghMYDL1FlNdc236fz3fX8HSE_Eq4kl7wbZ9xkMQeI44IJE0PKrCBdELkruP37nQ0G-cWFPPcNmTM7TiCr6_zhQU7eFWpYA7Dx6Owb4G6MwgK8BtDhCrDD9b-A_6Mmf1GPVUdHsENVUQ8S7ch1FeNApQmGmOd4n68C9m7uUCzBlkduLsfT6_nV7Sw6Hk-jE1RgsKegsF0c3ABsJkCTuQoj2qclxUCIom1M8uKsVhAamWbFRK3YRysHGlYfWNL0sTUOU4CTkk5-fV-Ha26aSuNlRcAm_pLzhkwPDyT0T3v9QX8fPwz1ocbKu9QnUtnPtrCmsRBSGjQzckZGoZEP5CPLhMS2v7MsXuzWAsIpp6nrf4dTpkIjBy98kyB6CcKQ4TpZ9fkDPXS4fyZLuv5C1hazOah31V9J2dCAWhpQpAF1NKCeBjSgAW1pQFsaUKABXdCAWhpQSwOKNNggw-Nfw95J7AdqxCWk1dg4CuF1aRhPecV0KkqpFPhjk3QFU5WBaLFihSgkY7nJuzpNdN4x2ohuamDPTNJNslyPa71FaKJlpTsZOPeq4EWu8c9eraXqaFZWWWK2yc_FcxpNnGzK6BVsdt729l3yqeXiN7I8n97pPbJS3s-vZ9PvFt9HvERlCw
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MapReduce+Based+Crow+Search+Adopted+Partitional+Clustering+Algorithms+For+Handling+Large+Scale+Data&rft.jtitle=International+journal+of+cognitive+informatics+%26+natural+intelligence&rft.date=2021-10-01&rft.issn=1557-3958&rft.eissn=1557-3966&rft.volume=15&rft.issue=4&rft_id=info:doi/10.4018%2FIJCINI.20211001oa19&rft.externalDBID=n%2Fa&rft.externalDocID=10_4018_IJCINI_20211001oa19
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-3958&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-3958&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-3958&client=summon