Implementation of Predicting Student Performance Using Linear Regression Algorithm
This data approach student achievement in secondary education of two Portuguese schools. The data attributes include student grades, demographic, social and school-related features) and it was collected by using school reports and questionnaires. Two datasets are provided regarding the performance i...
Uložené v:
| Vydané v: | International journal for research in applied science and engineering technology Ročník 10; číslo 6; s. 269 - 272 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
30.06.2022
|
| ISSN: | 2321-9653, 2321-9653 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This data approach student achievement in secondary education of two Portuguese schools. The data attributes include student grades, demographic, social and school-related features) and it was collected by using school reports and questionnaires. Two datasets are provided regarding the performance in two distinct subjects: Mathematics (mat) and Portuguese language (por). In [Cortez and Silva, 2008], the two data sets were modeled under binary/five-level classification and regression tasks. Important note: the target attribute G3 has a strong correlation with attributes G2 and G1. This occurs because G3 is the final year grade (issued at the 3rd period), while G1 and G2 correspond to the 1st and 2nd period grades. It is more difficult to predict G3 without G2 and G1, but such prediction is much more useful (see paper source for more details). Keywords: Decision Tree Algorithm, Naïve Bayes Algorithm, Support Vector Machine |
|---|---|
| AbstractList | This data approach student achievement in secondary education of two Portuguese schools. The data attributes include student grades, demographic, social and school-related features) and it was collected by using school reports and questionnaires. Two datasets are provided regarding the performance in two distinct subjects: Mathematics (mat) and Portuguese language (por). In [Cortez and Silva, 2008], the two data sets were modeled under binary/five-level classification and regression tasks. Important note: the target attribute G3 has a strong correlation with attributes G2 and G1. This occurs because G3 is the final year grade (issued at the 3rd period), while G1 and G2 correspond to the 1st and 2nd period grades. It is more difficult to predict G3 without G2 and G1, but such prediction is much more useful (see paper source for more details). Keywords: Decision Tree Algorithm, Naïve Bayes Algorithm, Support Vector Machine |
| Author | Dhande, Dr. S. S. Chauthe, Ms. Kavita Ashok |
| Author_xml | – sequence: 1 givenname: Ms. Kavita Ashok surname: Chauthe fullname: Chauthe, Ms. Kavita Ashok – sequence: 2 givenname: Dr. S. S. surname: Dhande fullname: Dhande, Dr. S. S. |
| BookMark | eNpNkM1uwjAQhK2KSqWUJ-glLxDqXTtgHxHqD1KkIkrPkR3W1ChxkJ0e-vYllENPM5rRzOG7Z6PQBWLsEfgMEUE--WM0ifoZcsSZFAr0DRujQMj1vBCjf_6OTVM6cs7PASIvxmy7bk8NtRR60_suZJ3LNpH2vu59OGQf_ff-XGUbiq6LrQk1ZZ9paEofyMRsS4dIKQ3LZXPoou-_2gd260yTaHrVCdu9PO9Wb3n5_rpeLcu8VlrnYFBo2HNnuZ0DOACJtuZEytjCOCvnwjkLvNCalFMLIolQWKkMd6DcQkyY-LutY5dSJFedom9N_KmAVxcw1RVMNYCpLmDEL_C3W5Y |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.22214/ijraset.2022.43819 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2321-9653 |
| EndPage | 272 |
| ExternalDocumentID | 10_22214_ijraset_2022_43819 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION FRP M~E |
| ID | FETCH-LOGICAL-c899-1a2391d0fb0b611f1142bc0ee8ab5afb463ffb10599e8f87ee4215b48a0f18f73 |
| ISSN | 2321-9653 |
| IngestDate | Sat Nov 29 03:27:22 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Issue | 6 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c899-1a2391d0fb0b611f1142bc0ee8ab5afb463ffb10599e8f87ee4215b48a0f18f73 |
| OpenAccessLink | https://doi.org/10.22214/ijraset.2022.43819 |
| PageCount | 4 |
| ParticipantIDs | crossref_primary_10_22214_ijraset_2022_43819 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-6-30 |
| PublicationDateYYYYMMDD | 2022-06-30 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-6-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal for research in applied science and engineering technology |
| PublicationYear | 2022 |
| SSID | ssj0003212205 |
| Score | 1.7988925 |
| Snippet | This data approach student achievement in secondary education of two Portuguese schools. The data attributes include student grades, demographic, social and... |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 269 |
| Title | Implementation of Predicting Student Performance Using Linear Regression Algorithm |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2321-9653 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003212205 issn: 2321-9653 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwELZKlwMXBFoQsIB82FtJycNJ7GPFQ0irRQh64BbFiU2LIEUhW3HiV_EDGT_yKCAEh5WqqLKiUeL5ZH-ezHyD0O-QeSSTgesA9yYOYXnmcCoiR0Q8F5LHhNpmE_H5Ob2-Zhe93ktdCzO_i4uCPj2xh__qahgDZ6vS2W-4uzEKA_AfnA5XcDtcv-R4rfd7b0uKNBm8KNXXmMpob2spS5X43tQLmKwBOJQqTZ9LcWMyY4vB6O5mVk6ryX2XwC5GEGvdCZWraGWDdAQltdy2LhpS0XnRKh8OqncB_aNJqnLtdXz2cTj4k86nVQrgmcyaUqJjFeTXdxyXw8GV-nVjFnDctQl29dIGNM5zWGRkgofig7F6bXY7GFxYaE2DF7tn-6b9z9vtALiPR8Bf09sSKIHKnPX9odI0Y-3uV3_xf7MpNqmKcEjSZhJrJFFGEm1kCf3w45CpRMK_z21kD95DVS_rrob2lYzclbZz-P5hOpSow23Ga2jVHkrwyIBpHfVE8RNdLgIJzyRugYQtkHAHSFgDCRsg4RZIuAHSBhqfnoyPzhzbgcPJ4BzueKkfMC93JXd55HlS1V3zzBWCpjxMJSdRICVXDJ0JKmksBAEGyQlNXelRGQebqF_MCrGFcCh5QHzCcz8MiJuBmSDIM5iQMJcZc8k2OqjnIHkwOivJJ1O_873bf6GVFoa7qF-V_8QeWs7m1fSx3NfuewX-yHx8 |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implementation+of+Predicting+Student+Performance+Using+Linear+Regression+Algorithm&rft.jtitle=International+journal+for+research+in+applied+science+and+engineering+technology&rft.au=Chauthe%2C+Ms.+Kavita+Ashok&rft.au=Dhande%2C+Dr.+S.+S.&rft.date=2022-06-30&rft.issn=2321-9653&rft.eissn=2321-9653&rft.volume=10&rft.issue=6&rft.spage=269&rft.epage=272&rft_id=info:doi/10.22214%2Fijraset.2022.43819&rft.externalDBID=n%2Fa&rft.externalDocID=10_22214_ijraset_2022_43819 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2321-9653&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2321-9653&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2321-9653&client=summon |