WITHDRAWN: Research on pipeline corrosion prediction based on RF-PSO-BP Algorithm

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of electrochemical science S. 100686
Hauptverfasser: Liu, Yingzheng, Zhang, Laibin, Zheng, Wenpei, Li, Xingtao, Yu, Shengyang, Jiang, Lumeng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 01.06.2024
ISSN:1452-3981, 1452-3981
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
ArticleNumber 100686
Author Zheng, Wenpei
Yu, Shengyang
Liu, Yingzheng
Li, Xingtao
Jiang, Lumeng
Zhang, Laibin
Author_xml – sequence: 1
  givenname: Yingzheng
  surname: Liu
  fullname: Liu, Yingzheng
– sequence: 2
  givenname: Laibin
  surname: Zhang
  fullname: Zhang, Laibin
– sequence: 3
  givenname: Wenpei
  surname: Zheng
  fullname: Zheng, Wenpei
– sequence: 4
  givenname: Xingtao
  surname: Li
  fullname: Li, Xingtao
– sequence: 5
  givenname: Shengyang
  surname: Yu
  fullname: Yu, Shengyang
– sequence: 6
  givenname: Lumeng
  surname: Jiang
  fullname: Jiang, Lumeng
BookMark eNpNkM1uwjAQhK2KSqWUJ-glLxDqv9hOb5SWgoQKTSNxtBx7KY4gQTaXvj1J6aF72B2NRqPVd48GTdsAQo8ETwgm4qme-LqFOKGY8s7BQokbNCQ8oynLFRn803doHGONu-E541IO0ed2WS5ei-n24zkpIIIJdp-0TXLyJzj4BhLbhtBG31sBnLfnXlYmgutjxTzdfK3Tl00yPXy3wZ_3xwd0uzOHCOO_O0Ll_K2cLdLV-n05m65Sq3KRZgJytZOGyYxIw7nKJK2sqpjijgJ0G-fCucwYppw0zjLjFCWMVZRgzgwbIXattd17McBOn4I_mvCjCdY9F13rXy6656KvXNgFTrdYJg
Cites_doi 10.1016/j.psep.2021.12.006
10.1016/j.corsci.2020.109084
10.1080/07350015.2016.1166119
10.1016/j.measurement.2015.10.015
10.5006/1.3293640
10.1016/j.oceaneng.2022.110817
10.1007/s11771-018-3801-0
10.1016/j.scienta.2023.112789
10.1016/j.ress.2023.109902
10.1016/j.measurement.2022.111592
10.1016/j.psep.2022.02.062
10.1016/j.jngse.2021.103871
10.1016/j.measurement.2021.110654
10.1016/j.marstruc.2020.102718
10.1016/j.psep.2021.07.031
10.1016/j.engfailanal.2020.104892
10.1016/j.eswa.2012.10.006
10.1016/j.mechmat.2021.104200
10.1016/j.compgeo.2023.105977
10.1016/j.ress.2021.108231
10.1016/j.jlp.2019.03.010
10.1016/j.jpse.2021.08.003
10.5006/0010-9312-31.5.177
10.1016/j.measurement.2014.11.011
10.1016/j.psep.2018.07.006
10.1016/j.chemolab.2020.104196
10.1016/j.ndteint.2019.102134
10.1016/j.engfailanal.2020.104397
10.1016/j.ress.2021.108016
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1016/j.ijoes.2024.100686
DatabaseName CrossRef
DatabaseTitle CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1452-3981
ExternalDocumentID 10_1016_j_ijoes_2024_100686
GroupedDBID .DC
0R~
29J
2WC
5GY
AALRI
AAXUO
AAYWO
AAYXX
ACGFO
ACVFH
ADCNI
ADVLN
AENEX
AEUPX
AFJKZ
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
C1A
CITATION
E3Z
EBS
FDB
GROUPED_DOAJ
GX1
HH5
M~E
OK1
OVT
RNS
TR2
ID FETCH-LOGICAL-c896-56e98f7a37517a448572bc8b384d2ee84d096dd5aa38d7adc3ad82133b21043a3
ISSN 1452-3981
IngestDate Sat Nov 29 04:58:21 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c896-56e98f7a37517a448572bc8b384d2ee84d096dd5aa38d7adc3ad82133b21043a3
Notes retraction
OpenAccessLink https://doi.org/10.1016/j.ijoes.2024.100686
ParticipantIDs crossref_primary_10_1016_j_ijoes_2024_100686
PublicationCentury 2000
PublicationDate 2024-6-00
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-6-00
PublicationDecade 2020
PublicationTitle International journal of electrochemical science
PublicationYear 2024
References Lee (10.1016/j.ijoes.2024.100686_bib16) 2013; 40
Nesic (10.1016/j.ijoes.2024.100686_bib29) 1996; 52
Tesfamariam (10.1016/j.ijoes.2024.100686_bib8) 2021; 1
Miao (10.1016/j.ijoes.2024.100686_bib22) 2024; 243
Zhi (10.1016/j.ijoes.2024.100686_bib7) 2021; 178
Wang (10.1016/j.ijoes.2024.100686_bib27) 2022; 200
Xu (10.1016/j.ijoes.2024.100686_bib12) 2023; 144
Wen (10.1016/j.ijoes.2024.100686_bib14) 2019; 60
Zhao (10.1016/j.ijoes.2024.100686_bib21) 2018; 25
Seghier (10.1016/j.ijoes.2024.100686_bib26) 2020; 112
Standard (10.1016/j.ijoes.2024.100686_bib30) 2005; 20
Yao (10.1016/j.ijoes.2024.100686_bib23) 2018; 36
Dewaard (10.1016/j.ijoes.2024.100686_bib28) 1975; 37
Shao (10.1016/j.ijoes.2024.100686_bib20) 2024; 166
Su (10.1016/j.ijoes.2024.100686_bib1) 2021; 216
Ossai (10.1016/j.ijoes.2024.100686_bib25) 2020; 110
Wang (10.1016/j.ijoes.2024.100686_bib4) 2020; 118
Narimani (10.1016/j.ijoes.2024.100686_bib36) 2015; 62
Algamal (10.1016/j.ijoes.2024.100686_bib33) 2021; 208
Sun (10.1016/j.ijoes.2024.100686_bib17) 2016; 79
Bao (10.1016/j.ijoes.2024.100686_bib18) 2022; 248
Xin (10.1016/j.ijoes.2024.100686_bib15) 2022; 189
Jia (10.1016/j.ijoes.2024.100686_bib5) 2021; 89
Wasim (10.1016/j.ijoes.2024.100686_bib34) 2022; 100
Bastian (10.1016/j.ijoes.2024.100686_bib19) 2019; 107
Li (10.1016/j.ijoes.2024.100686_bib6) 2022; 219
Yang (10.1016/j.ijoes.2024.100686_bib13) 2022; 158
Qin (10.1016/j.ijoes.2024.100686_bib11) 2022; 160
Ouladbrahim (10.1016/j.ijoes.2024.100686_bib24) 2022; 166
Yuan (10.1016/j.ijoes.2024.100686_bib2) 2023; 237
Abbas (10.1016/j.ijoes.2024.100686_bib31) 2018; 119
Abbas (10.1016/j.ijoes.2024.100686_bib3) 2020; 71
Seghier (10.1016/j.ijoes.2024.100686_bib10) 2022; 99
Zhang (10.1016/j.ijoes.2024.100686_bib35) 2024; 331
Li (10.1016/j.ijoes.2024.100686_bib32) 2021; 153
Wang (10.1016/j.ijoes.2024.100686_bib9) 2016; 12
References_xml – volume: 158
  start-page: 418
  year: 2022
  ident: 10.1016/j.ijoes.2024.100686_bib13
  article-title: Research on equipment corrosion diagnosis method and prediction model driven by data
  publication-title: Process Saf. Environmental Protection
  doi: 10.1016/j.psep.2021.12.006
– volume: 178
  year: 2021
  ident: 10.1016/j.ijoes.2024.100686_bib7
  article-title: Improving atmospheric corrosion prediction through key environmental factor identification by random forest-based model
  publication-title: Corrosion Sci
  doi: 10.1016/j.corsci.2020.109084
– volume: 99
  year: 2022
  ident: 10.1016/j.ijoes.2024.100686_bib10
  article-title: Prediction of the internal corrosion rate for oil and gas pipeline: Implementation of ensemble learning techniques
  publication-title: J. Nat. Gas Sci. Eng.
– volume: 36
  start-page: 173
  issue: 1
  year: 2018
  ident: 10.1016/j.ijoes.2024.100686_bib23
  article-title: Integrated-quantile-based estimation for first-price auction models
  publication-title: J. Bus. Econ. Statistics
  doi: 10.1080/07350015.2016.1166119
– volume: 79
  start-page: 147
  year: 2016
  ident: 10.1016/j.ijoes.2024.100686_bib17
  article-title: Natural gas pipeline leak aperture identification and location based on local mean decomposition analysis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.10.015
– volume: 52
  start-page: 280
  issue: 4
  year: 1996
  ident: 10.1016/j.ijoes.2024.100686_bib29
  article-title: An electrochemical model for prediction of corrosion of mild Steel in aqueous carbon dioxide solutions
  publication-title: Corrosion
  doi: 10.5006/1.3293640
– volume: 248
  year: 2022
  ident: 10.1016/j.ijoes.2024.100686_bib18
  article-title: Machine learning methods for damage detection of thermoplastic composite pipes under noise conditions
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2022.110817
– volume: 25
  start-page: 1013
  year: 2018
  ident: 10.1016/j.ijoes.2024.100686_bib21
  article-title: Flow behavior and constitutive description of 20CrMnTi steel at high temperature
  publication-title: J. Cent. South. Univ.
  doi: 10.1007/s11771-018-3801-0
– volume: 331
  year: 2024
  ident: 10.1016/j.ijoes.2024.100686_bib35
  article-title: Storage quality prediction of winter jujube based on particle swarm optimization-backpropagation-artificial neural network (PSO-BP-ANN)
  publication-title: Scientia Horticulturae
  doi: 10.1016/j.scienta.2023.112789
– volume: 243
  year: 2024
  ident: 10.1016/j.ijoes.2024.100686_bib22
  article-title: Corroded submarine pipeline degradation prediction based on theory-guided IMOSOA-EL model[J]
  publication-title: Reliability Eng. Syst. Saf.
  doi: 10.1016/j.ress.2023.109902
– volume: 144
  year: 2023
  ident: 10.1016/j.ijoes.2024.100686_bib12
  article-title: The research progress and prospect of data mining methods on corrosion prediction of oil and gas pipelines
  publication-title: Engi. Fail. Anal.
– volume: 200
  year: 2022
  ident: 10.1016/j.ijoes.2024.100686_bib27
  article-title: Novel method for prediction of corrosion current density of gas pipeline steel under stray current interference based on hybrid LWQPSO-NN model
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111592
– volume: 160
  start-page: 749
  year: 2022
  ident: 10.1016/j.ijoes.2024.100686_bib11
  article-title: Main control factors and prediction model of flow-accelerated CO2/H2S synergistic corrosion for X65 steel
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2022.02.062
– volume: 89
  year: 2021
  ident: 10.1016/j.ijoes.2024.100686_bib5
  article-title: Experimental and numerical simulation of erosion-corrosion of 90° steel elbow in shale gas pipeline
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2021.103871
– volume: 20
  year: 2005
  ident: 10.1016/j.ijoes.2024.100686_bib30
  article-title: CO2 Corrosion rate calculation model, Majorstural
  publication-title: Nor. Norwegian Technological Standards Inst. Oscarsgt
– volume: 112
  year: 2020
  ident: 10.1016/j.ijoes.2024.100686_bib26
  article-title: Prediction of maximum pitting corrosion depth in oil and gas pipelines
  publication-title: Eng. Fail. Anal.
– volume: 189
  year: 2022
  ident: 10.1016/j.ijoes.2024.100686_bib15
  article-title: Deformation characterization of oil and gas pipeline by ACM technique based on SSA-BP neural network nodel
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110654
– volume: 71
  year: 2020
  ident: 10.1016/j.ijoes.2024.100686_bib3
  article-title: An overview of maintenance management strategies for corroded steel structures in extreme marine environments
  publication-title: Mar. Structures
  doi: 10.1016/j.marstruc.2020.102718
– volume: 153
  start-page: 413
  year: 2021
  ident: 10.1016/j.ijoes.2024.100686_bib32
  article-title: A data-driven corrosion prediction model to support digitization of subsea operations
  publication-title: Process Saf. Environmental Protection
  doi: 10.1016/j.psep.2021.07.031
– volume: 118
  year: 2020
  ident: 10.1016/j.ijoes.2024.100686_bib4
  article-title: Study on corrosion mechanism and its influencing factors of a short distance intermittent crude oil transmission and distribution pipeline
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2020.104892
– volume: 40
  start-page: 1925
  issue: 6
  year: 2013
  ident: 10.1016/j.ijoes.2024.100686_bib16
  article-title: Oil and gas pipeline failure prediction system using long range ultrasonic transducers and Euclidean-Support Vector Machines classification approach
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.10.006
– volume: 166
  year: 2022
  ident: 10.1016/j.ijoes.2024.100686_bib24
  article-title: Experimental crack identification of API X70 steel pipeline using improved Artificial Neural Networks based on Whale Optimization Algorithm
  publication-title: Mechanics Mater
  doi: 10.1016/j.mechmat.2021.104200
– volume: 166
  year: 2024
  ident: 10.1016/j.ijoes.2024.100686_bib20
  article-title: Horizontal bearing characteristic and seismic fragility analysis of CFRP composite pipe piles subject to chloride corrosion
  publication-title: Computers Geotechnics
  doi: 10.1016/j.compgeo.2023.105977
– volume: 219
  year: 2022
  ident: 10.1016/j.ijoes.2024.100686_bib6
  article-title: A KPCA-BRANN based data-driven approach to model corrosion degradation of subsea oil pipelines
  publication-title: Reliability Eng. Syst. Saf.
  doi: 10.1016/j.ress.2021.108231
– volume: 12
  start-page: 133
  issue: 3
  year: 2016
  ident: 10.1016/j.ijoes.2024.100686_bib9
  article-title: Evaluation on soil corrosion of buried pipelines based on improved grey relational analysis method
  publication-title: J. Saf. Sci. Technol.
– volume: 60
  start-page: 1
  year: 2019
  ident: 10.1016/j.ijoes.2024.100686_bib14
  article-title: An optimization of artificial neural network modeling methodology for the reliability assessment of corroding natural gas pipelines
  publication-title: J. Loss Prev. Process Industries
  doi: 10.1016/j.jlp.2019.03.010
– volume: 1
  start-page: 329
  issue: 3
  year: 2021
  ident: 10.1016/j.ijoes.2024.100686_bib8
  article-title: General corrosion vulnerability assessment using a Bayesian belief network model incorporating experimental corrosion data for X60 pipe steel
  publication-title: J. Pipeline Sci. Eng.
  doi: 10.1016/j.jpse.2021.08.003
– volume: 37
  start-page: 177
  issue: 5
  year: 1975
  ident: 10.1016/j.ijoes.2024.100686_bib28
  article-title: Carbonic acid corrosion of steel
  publication-title: Corrosion
  doi: 10.5006/0010-9312-31.5.177
– volume: 62
  start-page: 97
  year: 2015
  ident: 10.1016/j.ijoes.2024.100686_bib36
  article-title: Predictions of corrosion current density and potential by using chemical composition and corrosion cell characteristics in microalloyed pipeline steels
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.11.011
– volume: 237
  year: 2023
  ident: 10.1016/j.ijoes.2024.100686_bib2
  article-title: Novel method for residual strength prediction of defective pipelines based on HTLBO-DELM model
  publication-title: Reliability Eng. Syst. Saf.
– volume: 119
  start-page: 36
  year: 2018
  ident: 10.1016/j.ijoes.2024.100686_bib31
  article-title: Neural network modelling of high pressure CO2 corrosion in pipeline steels
  publication-title: Process Saf. Environmental Protection
  doi: 10.1016/j.psep.2018.07.006
– volume: 208
  year: 2021
  ident: 10.1016/j.ijoes.2024.100686_bib33
  article-title: Improving grasshopper optimization algorithm for hyperparameters estimation and feature selection in support vector regression
  publication-title: Chemometrics Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2020.104196
– volume: 107
  year: 2019
  ident: 10.1016/j.ijoes.2024.100686_bib19
  article-title: Visual inspection and characterization of external corrosion in pipelines using deep neural network
  publication-title: NDT E Int.
  doi: 10.1016/j.ndteint.2019.102134
– volume: 110
  year: 2020
  ident: 10.1016/j.ijoes.2024.100686_bib25
  article-title: Corrosion defect modelling of aged pipelines with a feed-forward multi-layer neural network for leak and burst failure estimation
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2020.104397
– volume: 216
  year: 2021
  ident: 10.1016/j.ijoes.2024.100686_bib1
  article-title: Fast and accurate prediction of failure pressure of oil and gas defective pipelines using the deep learning model
  publication-title: Reliability Eng. Syst. Saf.
  doi: 10.1016/j.ress.2021.108016
– volume: 100
  year: 2022
  ident: 10.1016/j.ijoes.2024.100686_bib34
  article-title: External corrosion of oil and gas pipelines: A review of failure mechanisms and predictive preventions
  publication-title: J. Nat. Gas Sci. Engi.
SSID ssj0000493477
Score 2.369195
SecondaryResourceType retracted_publication
SourceID crossref
SourceType Index Database
StartPage 100686
Title WITHDRAWN: Research on pipeline corrosion prediction based on RF-PSO-BP Algorithm
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 1452-3981
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000493477
  issn: 1452-3981
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWgkQviKegPOQDN_CqiZ3a5rYUqiLBspSVdm-RX6FZlSRatlXFgX_Af2bsPAsVogcu1mpkjaJ833oeGc8g9NxQp4EKlOhYacKEjohUdo-AL5BRs2uySJswbIJPp2K5lLPR6Gd7F-bshBeFOD-X1X-FGmQAtr86ewW4O6UggN8AOqwAO6z_BPzi3fzwzdFkMa1r3Zq0BoBc5ZULTiUEnGAbPe7V2n-nCRTw5sz6bUcHZPb5I3k9ezE5-VKu883x16EHezGFOGg80QzUMW0Hgsa2dhU_-Wk47sFUfj92jb0cZqzfq1znRS92tXjhisrlvRYvW_qyf1UOMxYx6yurmkOWJTGhsh7VMnaXyOrDNAr3Vy495-uUw2qcr0rnm67HbNzvvthV-zdr19UgtuVtqzQoSb2StFZyDV2PeSJ9heCHH33KDoIpysIsz-5p2z5WoWLwj4cZ-DoDp2V-G91qog08qVlyB41ccRfd3G-H_N1Dnzq2vMItV3BZ4JYruOMK7rmCA1f8to4ruOPKfTQ_eDvfPyTNlA1ihIQ_5Z6TIuOK8iTiCoL1hMfaCE0Fs7FzsEKQa22iFBWWK2uosiKOKNUxRPJU0QdoqygL9xBhsautlFnEtJEsc_B-DLMZd5pzq5xRj9DL9nWkVd1LJf0LCjtX2_4Ybfdke4K2NutT9xTdMGeb_Nv6WUDyFwo2baU
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WITHDRAWN%3A+Research+on+pipeline+corrosion+prediction+based+on+RF-PSO-BP+Algorithm&rft.jtitle=International+journal+of+electrochemical+science&rft.au=Liu%2C+Yingzheng&rft.au=Zhang%2C+Laibin&rft.au=Zheng%2C+Wenpei&rft.au=Li%2C+Xingtao&rft.date=2024-06-01&rft.issn=1452-3981&rft.eissn=1452-3981&rft.spage=100686&rft_id=info:doi/10.1016%2Fj.ijoes.2024.100686&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijoes_2024_100686
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1452-3981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1452-3981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1452-3981&client=summon