WITHDRAWN: Research on pipeline corrosion prediction based on RF-PSO-BP Algorithm
Gespeichert in:
| Veröffentlicht in: | International journal of electrochemical science S. 100686 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
01.06.2024
|
| ISSN: | 1452-3981, 1452-3981 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| ArticleNumber | 100686 |
|---|---|
| Author | Zheng, Wenpei Yu, Shengyang Liu, Yingzheng Li, Xingtao Jiang, Lumeng Zhang, Laibin |
| Author_xml | – sequence: 1 givenname: Yingzheng surname: Liu fullname: Liu, Yingzheng – sequence: 2 givenname: Laibin surname: Zhang fullname: Zhang, Laibin – sequence: 3 givenname: Wenpei surname: Zheng fullname: Zheng, Wenpei – sequence: 4 givenname: Xingtao surname: Li fullname: Li, Xingtao – sequence: 5 givenname: Shengyang surname: Yu fullname: Yu, Shengyang – sequence: 6 givenname: Lumeng surname: Jiang fullname: Jiang, Lumeng |
| BookMark | eNpNkM1uwjAQhK2KSqWUJ-glLxDqv9hOb5SWgoQKTSNxtBx7KY4gQTaXvj1J6aF72B2NRqPVd48GTdsAQo8ETwgm4qme-LqFOKGY8s7BQokbNCQ8oynLFRn803doHGONu-E541IO0ed2WS5ei-n24zkpIIIJdp-0TXLyJzj4BhLbhtBG31sBnLfnXlYmgutjxTzdfK3Tl00yPXy3wZ_3xwd0uzOHCOO_O0Ll_K2cLdLV-n05m65Sq3KRZgJytZOGyYxIw7nKJK2sqpjijgJ0G-fCucwYppw0zjLjFCWMVZRgzgwbIXattd17McBOn4I_mvCjCdY9F13rXy6656KvXNgFTrdYJg |
| Cites_doi | 10.1016/j.psep.2021.12.006 10.1016/j.corsci.2020.109084 10.1080/07350015.2016.1166119 10.1016/j.measurement.2015.10.015 10.5006/1.3293640 10.1016/j.oceaneng.2022.110817 10.1007/s11771-018-3801-0 10.1016/j.scienta.2023.112789 10.1016/j.ress.2023.109902 10.1016/j.measurement.2022.111592 10.1016/j.psep.2022.02.062 10.1016/j.jngse.2021.103871 10.1016/j.measurement.2021.110654 10.1016/j.marstruc.2020.102718 10.1016/j.psep.2021.07.031 10.1016/j.engfailanal.2020.104892 10.1016/j.eswa.2012.10.006 10.1016/j.mechmat.2021.104200 10.1016/j.compgeo.2023.105977 10.1016/j.ress.2021.108231 10.1016/j.jlp.2019.03.010 10.1016/j.jpse.2021.08.003 10.5006/0010-9312-31.5.177 10.1016/j.measurement.2014.11.011 10.1016/j.psep.2018.07.006 10.1016/j.chemolab.2020.104196 10.1016/j.ndteint.2019.102134 10.1016/j.engfailanal.2020.104397 10.1016/j.ress.2021.108016 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ijoes.2024.100686 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1452-3981 |
| ExternalDocumentID | 10_1016_j_ijoes_2024_100686 |
| GroupedDBID | .DC 0R~ 29J 2WC 5GY AALRI AAXUO AAYWO AAYXX ACGFO ACVFH ADCNI ADVLN AENEX AEUPX AFJKZ AFPUW AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP C1A CITATION E3Z EBS FDB GROUPED_DOAJ GX1 HH5 M~E OK1 OVT RNS TR2 |
| ID | FETCH-LOGICAL-c896-56e98f7a37517a448572bc8b384d2ee84d096dd5aa38d7adc3ad82133b21043a3 |
| ISSN | 1452-3981 |
| IngestDate | Sat Nov 29 04:58:21 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c896-56e98f7a37517a448572bc8b384d2ee84d096dd5aa38d7adc3ad82133b21043a3 |
| Notes | retraction |
| OpenAccessLink | https://doi.org/10.1016/j.ijoes.2024.100686 |
| ParticipantIDs | crossref_primary_10_1016_j_ijoes_2024_100686 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-6-00 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-6-00 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of electrochemical science |
| PublicationYear | 2024 |
| References | Lee (10.1016/j.ijoes.2024.100686_bib16) 2013; 40 Nesic (10.1016/j.ijoes.2024.100686_bib29) 1996; 52 Tesfamariam (10.1016/j.ijoes.2024.100686_bib8) 2021; 1 Miao (10.1016/j.ijoes.2024.100686_bib22) 2024; 243 Zhi (10.1016/j.ijoes.2024.100686_bib7) 2021; 178 Wang (10.1016/j.ijoes.2024.100686_bib27) 2022; 200 Xu (10.1016/j.ijoes.2024.100686_bib12) 2023; 144 Wen (10.1016/j.ijoes.2024.100686_bib14) 2019; 60 Zhao (10.1016/j.ijoes.2024.100686_bib21) 2018; 25 Seghier (10.1016/j.ijoes.2024.100686_bib26) 2020; 112 Standard (10.1016/j.ijoes.2024.100686_bib30) 2005; 20 Yao (10.1016/j.ijoes.2024.100686_bib23) 2018; 36 Dewaard (10.1016/j.ijoes.2024.100686_bib28) 1975; 37 Shao (10.1016/j.ijoes.2024.100686_bib20) 2024; 166 Su (10.1016/j.ijoes.2024.100686_bib1) 2021; 216 Ossai (10.1016/j.ijoes.2024.100686_bib25) 2020; 110 Wang (10.1016/j.ijoes.2024.100686_bib4) 2020; 118 Narimani (10.1016/j.ijoes.2024.100686_bib36) 2015; 62 Algamal (10.1016/j.ijoes.2024.100686_bib33) 2021; 208 Sun (10.1016/j.ijoes.2024.100686_bib17) 2016; 79 Bao (10.1016/j.ijoes.2024.100686_bib18) 2022; 248 Xin (10.1016/j.ijoes.2024.100686_bib15) 2022; 189 Jia (10.1016/j.ijoes.2024.100686_bib5) 2021; 89 Wasim (10.1016/j.ijoes.2024.100686_bib34) 2022; 100 Bastian (10.1016/j.ijoes.2024.100686_bib19) 2019; 107 Li (10.1016/j.ijoes.2024.100686_bib6) 2022; 219 Yang (10.1016/j.ijoes.2024.100686_bib13) 2022; 158 Qin (10.1016/j.ijoes.2024.100686_bib11) 2022; 160 Ouladbrahim (10.1016/j.ijoes.2024.100686_bib24) 2022; 166 Yuan (10.1016/j.ijoes.2024.100686_bib2) 2023; 237 Abbas (10.1016/j.ijoes.2024.100686_bib31) 2018; 119 Abbas (10.1016/j.ijoes.2024.100686_bib3) 2020; 71 Seghier (10.1016/j.ijoes.2024.100686_bib10) 2022; 99 Zhang (10.1016/j.ijoes.2024.100686_bib35) 2024; 331 Li (10.1016/j.ijoes.2024.100686_bib32) 2021; 153 Wang (10.1016/j.ijoes.2024.100686_bib9) 2016; 12 |
| References_xml | – volume: 158 start-page: 418 year: 2022 ident: 10.1016/j.ijoes.2024.100686_bib13 article-title: Research on equipment corrosion diagnosis method and prediction model driven by data publication-title: Process Saf. Environmental Protection doi: 10.1016/j.psep.2021.12.006 – volume: 178 year: 2021 ident: 10.1016/j.ijoes.2024.100686_bib7 article-title: Improving atmospheric corrosion prediction through key environmental factor identification by random forest-based model publication-title: Corrosion Sci doi: 10.1016/j.corsci.2020.109084 – volume: 99 year: 2022 ident: 10.1016/j.ijoes.2024.100686_bib10 article-title: Prediction of the internal corrosion rate for oil and gas pipeline: Implementation of ensemble learning techniques publication-title: J. Nat. Gas Sci. Eng. – volume: 36 start-page: 173 issue: 1 year: 2018 ident: 10.1016/j.ijoes.2024.100686_bib23 article-title: Integrated-quantile-based estimation for first-price auction models publication-title: J. Bus. Econ. Statistics doi: 10.1080/07350015.2016.1166119 – volume: 79 start-page: 147 year: 2016 ident: 10.1016/j.ijoes.2024.100686_bib17 article-title: Natural gas pipeline leak aperture identification and location based on local mean decomposition analysis publication-title: Measurement doi: 10.1016/j.measurement.2015.10.015 – volume: 52 start-page: 280 issue: 4 year: 1996 ident: 10.1016/j.ijoes.2024.100686_bib29 article-title: An electrochemical model for prediction of corrosion of mild Steel in aqueous carbon dioxide solutions publication-title: Corrosion doi: 10.5006/1.3293640 – volume: 248 year: 2022 ident: 10.1016/j.ijoes.2024.100686_bib18 article-title: Machine learning methods for damage detection of thermoplastic composite pipes under noise conditions publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2022.110817 – volume: 25 start-page: 1013 year: 2018 ident: 10.1016/j.ijoes.2024.100686_bib21 article-title: Flow behavior and constitutive description of 20CrMnTi steel at high temperature publication-title: J. Cent. South. Univ. doi: 10.1007/s11771-018-3801-0 – volume: 331 year: 2024 ident: 10.1016/j.ijoes.2024.100686_bib35 article-title: Storage quality prediction of winter jujube based on particle swarm optimization-backpropagation-artificial neural network (PSO-BP-ANN) publication-title: Scientia Horticulturae doi: 10.1016/j.scienta.2023.112789 – volume: 243 year: 2024 ident: 10.1016/j.ijoes.2024.100686_bib22 article-title: Corroded submarine pipeline degradation prediction based on theory-guided IMOSOA-EL model[J] publication-title: Reliability Eng. Syst. Saf. doi: 10.1016/j.ress.2023.109902 – volume: 144 year: 2023 ident: 10.1016/j.ijoes.2024.100686_bib12 article-title: The research progress and prospect of data mining methods on corrosion prediction of oil and gas pipelines publication-title: Engi. Fail. Anal. – volume: 200 year: 2022 ident: 10.1016/j.ijoes.2024.100686_bib27 article-title: Novel method for prediction of corrosion current density of gas pipeline steel under stray current interference based on hybrid LWQPSO-NN model publication-title: Measurement doi: 10.1016/j.measurement.2022.111592 – volume: 160 start-page: 749 year: 2022 ident: 10.1016/j.ijoes.2024.100686_bib11 article-title: Main control factors and prediction model of flow-accelerated CO2/H2S synergistic corrosion for X65 steel publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2022.02.062 – volume: 89 year: 2021 ident: 10.1016/j.ijoes.2024.100686_bib5 article-title: Experimental and numerical simulation of erosion-corrosion of 90° steel elbow in shale gas pipeline publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2021.103871 – volume: 20 year: 2005 ident: 10.1016/j.ijoes.2024.100686_bib30 article-title: CO2 Corrosion rate calculation model, Majorstural publication-title: Nor. Norwegian Technological Standards Inst. Oscarsgt – volume: 112 year: 2020 ident: 10.1016/j.ijoes.2024.100686_bib26 article-title: Prediction of maximum pitting corrosion depth in oil and gas pipelines publication-title: Eng. Fail. Anal. – volume: 189 year: 2022 ident: 10.1016/j.ijoes.2024.100686_bib15 article-title: Deformation characterization of oil and gas pipeline by ACM technique based on SSA-BP neural network nodel publication-title: Measurement doi: 10.1016/j.measurement.2021.110654 – volume: 71 year: 2020 ident: 10.1016/j.ijoes.2024.100686_bib3 article-title: An overview of maintenance management strategies for corroded steel structures in extreme marine environments publication-title: Mar. Structures doi: 10.1016/j.marstruc.2020.102718 – volume: 153 start-page: 413 year: 2021 ident: 10.1016/j.ijoes.2024.100686_bib32 article-title: A data-driven corrosion prediction model to support digitization of subsea operations publication-title: Process Saf. Environmental Protection doi: 10.1016/j.psep.2021.07.031 – volume: 118 year: 2020 ident: 10.1016/j.ijoes.2024.100686_bib4 article-title: Study on corrosion mechanism and its influencing factors of a short distance intermittent crude oil transmission and distribution pipeline publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2020.104892 – volume: 40 start-page: 1925 issue: 6 year: 2013 ident: 10.1016/j.ijoes.2024.100686_bib16 article-title: Oil and gas pipeline failure prediction system using long range ultrasonic transducers and Euclidean-Support Vector Machines classification approach publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.10.006 – volume: 166 year: 2022 ident: 10.1016/j.ijoes.2024.100686_bib24 article-title: Experimental crack identification of API X70 steel pipeline using improved Artificial Neural Networks based on Whale Optimization Algorithm publication-title: Mechanics Mater doi: 10.1016/j.mechmat.2021.104200 – volume: 166 year: 2024 ident: 10.1016/j.ijoes.2024.100686_bib20 article-title: Horizontal bearing characteristic and seismic fragility analysis of CFRP composite pipe piles subject to chloride corrosion publication-title: Computers Geotechnics doi: 10.1016/j.compgeo.2023.105977 – volume: 219 year: 2022 ident: 10.1016/j.ijoes.2024.100686_bib6 article-title: A KPCA-BRANN based data-driven approach to model corrosion degradation of subsea oil pipelines publication-title: Reliability Eng. Syst. Saf. doi: 10.1016/j.ress.2021.108231 – volume: 12 start-page: 133 issue: 3 year: 2016 ident: 10.1016/j.ijoes.2024.100686_bib9 article-title: Evaluation on soil corrosion of buried pipelines based on improved grey relational analysis method publication-title: J. Saf. Sci. Technol. – volume: 60 start-page: 1 year: 2019 ident: 10.1016/j.ijoes.2024.100686_bib14 article-title: An optimization of artificial neural network modeling methodology for the reliability assessment of corroding natural gas pipelines publication-title: J. Loss Prev. Process Industries doi: 10.1016/j.jlp.2019.03.010 – volume: 1 start-page: 329 issue: 3 year: 2021 ident: 10.1016/j.ijoes.2024.100686_bib8 article-title: General corrosion vulnerability assessment using a Bayesian belief network model incorporating experimental corrosion data for X60 pipe steel publication-title: J. Pipeline Sci. Eng. doi: 10.1016/j.jpse.2021.08.003 – volume: 37 start-page: 177 issue: 5 year: 1975 ident: 10.1016/j.ijoes.2024.100686_bib28 article-title: Carbonic acid corrosion of steel publication-title: Corrosion doi: 10.5006/0010-9312-31.5.177 – volume: 62 start-page: 97 year: 2015 ident: 10.1016/j.ijoes.2024.100686_bib36 article-title: Predictions of corrosion current density and potential by using chemical composition and corrosion cell characteristics in microalloyed pipeline steels publication-title: Measurement doi: 10.1016/j.measurement.2014.11.011 – volume: 237 year: 2023 ident: 10.1016/j.ijoes.2024.100686_bib2 article-title: Novel method for residual strength prediction of defective pipelines based on HTLBO-DELM model publication-title: Reliability Eng. Syst. Saf. – volume: 119 start-page: 36 year: 2018 ident: 10.1016/j.ijoes.2024.100686_bib31 article-title: Neural network modelling of high pressure CO2 corrosion in pipeline steels publication-title: Process Saf. Environmental Protection doi: 10.1016/j.psep.2018.07.006 – volume: 208 year: 2021 ident: 10.1016/j.ijoes.2024.100686_bib33 article-title: Improving grasshopper optimization algorithm for hyperparameters estimation and feature selection in support vector regression publication-title: Chemometrics Intell. Lab. Syst. doi: 10.1016/j.chemolab.2020.104196 – volume: 107 year: 2019 ident: 10.1016/j.ijoes.2024.100686_bib19 article-title: Visual inspection and characterization of external corrosion in pipelines using deep neural network publication-title: NDT E Int. doi: 10.1016/j.ndteint.2019.102134 – volume: 110 year: 2020 ident: 10.1016/j.ijoes.2024.100686_bib25 article-title: Corrosion defect modelling of aged pipelines with a feed-forward multi-layer neural network for leak and burst failure estimation publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2020.104397 – volume: 216 year: 2021 ident: 10.1016/j.ijoes.2024.100686_bib1 article-title: Fast and accurate prediction of failure pressure of oil and gas defective pipelines using the deep learning model publication-title: Reliability Eng. Syst. Saf. doi: 10.1016/j.ress.2021.108016 – volume: 100 year: 2022 ident: 10.1016/j.ijoes.2024.100686_bib34 article-title: External corrosion of oil and gas pipelines: A review of failure mechanisms and predictive preventions publication-title: J. Nat. Gas Sci. Engi. |
| SSID | ssj0000493477 |
| Score | 2.369195 |
| SecondaryResourceType | retracted_publication |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 100686 |
| Title | WITHDRAWN: Research on pipeline corrosion prediction based on RF-PSO-BP Algorithm |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 1452-3981 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000493477 issn: 1452-3981 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWgkQviKegPOQDN_CqiZ3a5rYUqiLBspSVdm-RX6FZlSRatlXFgX_Af2bsPAsVogcu1mpkjaJ833oeGc8g9NxQp4EKlOhYacKEjohUdo-AL5BRs2uySJswbIJPp2K5lLPR6Gd7F-bshBeFOD-X1X-FGmQAtr86ewW4O6UggN8AOqwAO6z_BPzi3fzwzdFkMa1r3Zq0BoBc5ZULTiUEnGAbPe7V2n-nCRTw5sz6bUcHZPb5I3k9ezE5-VKu883x16EHezGFOGg80QzUMW0Hgsa2dhU_-Wk47sFUfj92jb0cZqzfq1znRS92tXjhisrlvRYvW_qyf1UOMxYx6yurmkOWJTGhsh7VMnaXyOrDNAr3Vy495-uUw2qcr0rnm67HbNzvvthV-zdr19UgtuVtqzQoSb2StFZyDV2PeSJ9heCHH33KDoIpysIsz-5p2z5WoWLwj4cZ-DoDp2V-G91qog08qVlyB41ccRfd3G-H_N1Dnzq2vMItV3BZ4JYruOMK7rmCA1f8to4ruOPKfTQ_eDvfPyTNlA1ihIQ_5Z6TIuOK8iTiCoL1hMfaCE0Fs7FzsEKQa22iFBWWK2uosiKOKNUxRPJU0QdoqygL9xBhsautlFnEtJEsc_B-DLMZd5pzq5xRj9DL9nWkVd1LJf0LCjtX2_4Ybfdke4K2NutT9xTdMGeb_Nv6WUDyFwo2baU |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WITHDRAWN%3A+Research+on+pipeline+corrosion+prediction+based+on+RF-PSO-BP+Algorithm&rft.jtitle=International+journal+of+electrochemical+science&rft.au=Liu%2C+Yingzheng&rft.au=Zhang%2C+Laibin&rft.au=Zheng%2C+Wenpei&rft.au=Li%2C+Xingtao&rft.date=2024-06-01&rft.issn=1452-3981&rft.eissn=1452-3981&rft.spage=100686&rft_id=info:doi/10.1016%2Fj.ijoes.2024.100686&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijoes_2024_100686 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1452-3981&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1452-3981&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1452-3981&client=summon |