Adaptive Scheduling Heuristic Priority Linear Regression (ASH-PLR): A Novel CPU Scheduling Algorithm using Predictive Priority Levels

Inadequate implementation of parameters such as priority levels can be seen in many common and contemporary scheduling algorithms which can lead to starvation. With the rise of industry 4.0, the advancement of computers and operating systems require more efficient and optimized scheduling algorithms...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of information systems engineering & management Ročník 10; číslo 43s; s. 1160 - 1171
Hlavní autor: Don Harl C. Malabanan
Médium: Journal Article
Jazyk:angličtina
Vydáno: 07.05.2025
ISSN:2468-4376, 2468-4376
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Inadequate implementation of parameters such as priority levels can be seen in many common and contemporary scheduling algorithms which can lead to starvation. With the rise of industry 4.0, the advancement of computers and operating systems require more efficient and optimized scheduling algorithms to assess big data. This study aims to explore and develop a novel and heuristic approach to scheduling algorithms by incorporating predictive models in machine learning, more specifically the linear regression model to predict and allocate the most efficient priority level to each process upon execution. The newly developed ASH-PLR algorithm was tested against common and contemporary scheduling algorithms such as the FCFS, AMRR, and the MMRRA in terms of their Average Turnaround Time, Average Waiting Time, and Context Switches. The results indicate that the ASH-PLR is the superior scheduling algorithm when it comes to processes that have shorter burst times and extensively outperforms the FCFS and MMRRA in terms of Average Turnaround Time and Average Waiting Time. ASH-PLR displays the ability of predictive models to be integrated in future algorithms for better optimizations in upcoming new technology.
AbstractList Inadequate implementation of parameters such as priority levels can be seen in many common and contemporary scheduling algorithms which can lead to starvation. With the rise of industry 4.0, the advancement of computers and operating systems require more efficient and optimized scheduling algorithms to assess big data. This study aims to explore and develop a novel and heuristic approach to scheduling algorithms by incorporating predictive models in machine learning, more specifically the linear regression model to predict and allocate the most efficient priority level to each process upon execution. The newly developed ASH-PLR algorithm was tested against common and contemporary scheduling algorithms such as the FCFS, AMRR, and the MMRRA in terms of their Average Turnaround Time, Average Waiting Time, and Context Switches. The results indicate that the ASH-PLR is the superior scheduling algorithm when it comes to processes that have shorter burst times and extensively outperforms the FCFS and MMRRA in terms of Average Turnaround Time and Average Waiting Time. ASH-PLR displays the ability of predictive models to be integrated in future algorithms for better optimizations in upcoming new technology.
Author Don Harl C. Malabanan
Author_xml – sequence: 1
  surname: Don Harl C. Malabanan
  fullname: Don Harl C. Malabanan
BookMark eNpNkM1OwkAUhScGExF5Ajez1EXr_HWm464hKiaNNoDrZtrewpDSkhkg4QF8by2SyOqeuzjfSb5bNGi7FhC6pySMmIr509p62IQHSqzgPowjLq_QkAkZB4IrObjIN2js_ZoQwqggkWBD9J1UZruzB8DzcgXVvrHtEk9h76zf2RJnznbO7o44tS0Yh2ewdOC97Vr8kMynQZbOHp9xgj-6AzR4kn1dYpJm2ZdXG7z3_Z85qGx5Gvvnwm_R36Hr2jQexuc7QovXl8VkGqSfb--TJA3KWMuAgWJgGAMd10rVkkaghaKiUqZgsjZEcw7aRCBBa0plTCumQUEFUSEUK_gI8T9s6TrvHdT51tmNcceckvzkMj-5zM8u894l_wGVCG0C
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.52783/jisem.v10i43s.8536
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2468-4376
EndPage 1171
ExternalDocumentID 10_52783_jisem_v10i43s_8536
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
OK1
ID FETCH-LOGICAL-c896-2e72ea22e98f77f615e94714d7ab26fa0933e9a5e6e9911681d29e7ede5b472b3
ISSN 2468-4376
IngestDate Sat Nov 29 07:55:45 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 43s
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c896-2e72ea22e98f77f615e94714d7ab26fa0933e9a5e6e9911681d29e7ede5b472b3
OpenAccessLink https://jisem-journal.com/index.php/journal/article/download/8536/3884
PageCount 12
ParticipantIDs crossref_primary_10_52783_jisem_v10i43s_8536
PublicationCentury 2000
PublicationDate 2025-05-07
PublicationDateYYYYMMDD 2025-05-07
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-07
  day: 07
PublicationDecade 2020
PublicationTitle Journal of information systems engineering & management
PublicationYear 2025
SSID ssj0002140542
Score 2.2907572
Snippet Inadequate implementation of parameters such as priority levels can be seen in many common and contemporary scheduling algorithms which can lead to starvation....
SourceID crossref
SourceType Index Database
StartPage 1160
Title Adaptive Scheduling Heuristic Priority Linear Regression (ASH-PLR): A Novel CPU Scheduling Algorithm using Predictive Priority Levels
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2468-4376
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140542
  issn: 2468-4376
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9MwGLbK4AAHxKf4lg8ggUK6xknsmFs0QD1sVbQVabfITpxRqU2rZK124saP4t_x2s6XtoHYgUtUWdaTtM8T-33d9wOhtzT3_UJluTuRlLqByHxXUqZcAe9VICdUCt8kCh-y2Sw6PeXJaPSrzYXZLVlZRhcXfPNfqYYxIFunzt6A7g4UBuAzkA5XoB2u_0R8nIuNiQc6AT7yrUk3n6qtrcjsJNVirfvVaWdc1_A5Vmc2ElaLIIpPpm5yePyOcJuxPlvv1NI5SL4NweLlmYb4vnK25qAhqfSfPeaWPbqORar_YPk2xVqN8mwl6dpRfV1Eo8bVlbCczzB7Kip4nLFzJEC8MKMcHlqQ0IQIsn5tIzrhK_BZUwX7mrF2cZ4MRBj49WCt9TzbiaDZtz3P9nK5vCeEupeI3hQWtVqNd95kATBjsFKuqcB9aWfs4hXBUzIwqQFJG5BUg9xCtwkLuY4mPPrRH-8RcFxD07qp-1q25pXB2b_6MAO7aGDgzB-g-w0_OLaKeohGqnyE7g3qVT5GP1tt4V4OuNMWbtnHVlu41xZ-3yjrwyccY6MqDKoawnSqwkZVuFfVANeo6gmaf_0yP5i6TR8PN4s4dYliRAlCFI8KxgowoRUHkyjImZCEFkKfqSkuQkUVOCseBQ-KcMVUrkIZMCL9p2ivXJfqGcKSR1GmjWIeeQFMiQqZUV9mYQFesvDpc_Sx_RHTja3Wkv6Fuxc3m_4S3e21_ArtnVdb9RrdyXbni7p6Y_j_DQhBk-Y
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Scheduling+Heuristic+Priority+Linear+Regression+%28ASH-PLR%29%3A+A+Novel+CPU+Scheduling+Algorithm+using+Predictive+Priority+Levels&rft.jtitle=Journal+of+information+systems+engineering+%26+management&rft.au=Don+Harl+C.+Malabanan&rft.date=2025-05-07&rft.issn=2468-4376&rft.eissn=2468-4376&rft.volume=10&rft.issue=43s&rft.spage=1160&rft.epage=1171&rft_id=info:doi/10.52783%2Fjisem.v10i43s.8536&rft.externalDBID=n%2Fa&rft.externalDocID=10_52783_jisem_v10i43s_8536
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-4376&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-4376&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-4376&client=summon