Stock Prediction using Long Short-Term Memory, Support Vector Regression and Linear Regression Algorithms

Prediction is most important for stock market not only for traders but also for computer engineers who analyses stock data. We can perform this prediction by two ways one is using historical stock data and other by analyzing by information gathered from social media. It is based on model/pattern use...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal for research in applied science and engineering technology Ročník 9; číslo VII; s. 3632 - 3638
Hlavní autor: Kumar, Mr. V. Manoj
Médium: Journal Article
Jazyk:angličtina
Vydáno: 31.07.2021
ISSN:2321-9653, 2321-9653
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Prediction is most important for stock market not only for traders but also for computer engineers who analyses stock data. We can perform this prediction by two ways one is using historical stock data and other by analyzing by information gathered from social media. It is based on model/pattern used to predict stock dataset, there are so many models are available for predicting stocks, simply model is algorithm that’s from machine learning and deep learning. In the data set the two main parameters open and close value are used for stock prediction mostly but we can also predict by its volume too. So that data is preprocessed before it is used for prediction. In this paper we used various algorithm like linear regression, support vector regression and long short-term memory for better accuracy and to compare how it different from other algorithm and for predicting future stock.
AbstractList Prediction is most important for stock market not only for traders but also for computer engineers who analyses stock data. We can perform this prediction by two ways one is using historical stock data and other by analyzing by information gathered from social media. It is based on model/pattern used to predict stock dataset, there are so many models are available for predicting stocks, simply model is algorithm that’s from machine learning and deep learning. In the data set the two main parameters open and close value are used for stock prediction mostly but we can also predict by its volume too. So that data is preprocessed before it is used for prediction. In this paper we used various algorithm like linear regression, support vector regression and long short-term memory for better accuracy and to compare how it different from other algorithm and for predicting future stock.
Author Kumar, Mr. V. Manoj
Author_xml – sequence: 1
  givenname: Mr. V. Manoj
  surname: Kumar
  fullname: Kumar, Mr. V. Manoj
BookMark eNpVkE1OwzAQRi1UJErpCdj4ACT4J4nrZVUBRQoCkYpt5NiT1KWJKztd9PYkpQvYzIzezHyLd4smnesAoXtKYsYYTR7tzqsAfcwIozEXdMGv0JRxRiOZpXzyZ75B8xB2hJABMEbSKbJF7_Q3_vBgrO6t6_Ax2K7BuRtKsXW-jzbgW_wGrfOnB1wcD4cB4i_QvfP4ExoPIYx_qjM4tx2of3S5b5y3_bYNd-i6VvsA80ufoeL5abNaR_n7y-tqmUd6IXlEieFGkQRILRJhUpBMmCyrUqMFk3JYLioNShqTpCLTKSNSVNV4kNQ043yG-G-q9i4ED3V58LZV_lRSUp51lRdd5airPOviP-OTYyU
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.22214/ijraset.2021.37183
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2321-9653
EndPage 3638
ExternalDocumentID 10_22214_ijraset_2021_37183
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
FRP
M~E
ID FETCH-LOGICAL-c893-10d3da04e0f747d5e927d66b5dc7299d3d8bcea9dd4576c52097bb66b54f1633
ISSN 2321-9653
IngestDate Sat Nov 29 03:27:05 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue VII
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c893-10d3da04e0f747d5e927d66b5dc7299d3d8bcea9dd4576c52097bb66b54f1633
OpenAccessLink https://doi.org/10.22214/ijraset.2021.37183
PageCount 7
ParticipantIDs crossref_primary_10_22214_ijraset_2021_37183
PublicationCentury 2000
PublicationDate 2021-07-31
PublicationDateYYYYMMDD 2021-07-31
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-31
  day: 31
PublicationDecade 2020
PublicationTitle International journal for research in applied science and engineering technology
PublicationYear 2021
SSID ssj0003212205
Score 1.7656207
Snippet Prediction is most important for stock market not only for traders but also for computer engineers who analyses stock data. We can perform this prediction by...
SourceID crossref
SourceType Index Database
StartPage 3632
Title Stock Prediction using Long Short-Term Memory, Support Vector Regression and Linear Regression Algorithms
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2321-9653
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003212205
  issn: 2321-9653
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF6lwKEXVAQIClR76C04tb3rxx4RalUkgpASRdwsr3cNjpATuQ7ixF_iLzL7cNYqqIJDL5Y9sSax59POI9_MIvTdj0tOI196Is1jj0YR9zhJJWQpUrCS84KVulH4Mrm6Sm9u2PVg8Nz1wjzcJ3WdPj6y5X81NcjA2Kp19gPmXisFAZyD0eEIZofjuww_aWGJU9QKUZltwFe6HHCpNhWa3EG07U1hNR6OFcXWEL1WSxWED2e6gA8v_NZwYw1NGZJVNeunJz27v100VXtn55zPHRfelRa7gRSKxGjnCenSSm6D3q6bSH2DdCMRh-2rSv-aAz5uRsPZSPF1FvN-rSIMuiJot6RB-BZ4LDbjgUfyDZldk1kPerOLi94KS2JbD5XdZfqWJ4CwJ6BgqmreQDSgSLNhMCLgiIlzfN2f_X_5wzVLEfIjrSazSjKlJNNKPqHNMImY8gTjJ1fUg0dRjct6Q0P7VGbSldbz4_WP6UVDvbBm-gVt23wEnxkc7aCBrHdRpTGEHYawxhBWGMIOQ9hg6BRbBGGDIOywgsG-2CCoL3UI2kOTXz-n5789uyeHV0BkC05bEJH7VPol5KEikixMRBzzSBSQpTH4MOWFzJkQFBLZQnGsEs7VDbSEyJ_so416UcsDhANZkoAkIeUppaQs8oL6vExz8LfgcoQ8RKfdm8mWZvBK9g-DfP3Y7Ufos8PnMdpom5U8QVvFQ1v9ab5po74AtIWEKg
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stock+Prediction+using+Long+Short-Term+Memory%2C+Support+Vector+Regression+and+Linear+Regression+Algorithms&rft.jtitle=International+journal+for+research+in+applied+science+and+engineering+technology&rft.au=Kumar%2C+Mr.+V.+Manoj&rft.date=2021-07-31&rft.issn=2321-9653&rft.eissn=2321-9653&rft.volume=9&rft.issue=VII&rft.spage=3632&rft.epage=3638&rft_id=info:doi/10.22214%2Fijraset.2021.37183&rft.externalDBID=n%2Fa&rft.externalDocID=10_22214_ijraset_2021_37183
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2321-9653&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2321-9653&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2321-9653&client=summon