Model complexity optimization of equivalent dynamical linearization data models used in model‐free adaptive control
This paper discusses a strategy for optimizing the complexity of time‐varying data models as used in model‐free adaptive control (MFAC). Here the dynamic linearization in compact form (CFDL), partial form (PFDL), and full form (FFDL) are considered as data models used to describe input/output (I/O)...
Uloženo v:
| Vydáno v: | Proceedings in applied mathematics and mechanics Ročník 24; číslo 4 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
01.12.2024
|
| ISSN: | 1617-7061, 1617-7061 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper discusses a strategy for optimizing the complexity of time‐varying data models as used in model‐free adaptive control (MFAC). Here the dynamic linearization in compact form (CFDL), partial form (PFDL), and full form (FFDL) are considered as data models used to describe input/output (I/O) data sets. These data models are built only for control purpose and can have various degrees of complexity depending on the size of the considered time‐window as well as the underlying algorithms. The methodology is to compare the performance of the data models according to an evaluation criterion, to analyze the order of different data models based on bias‐variance trade‐off, and to select the best‐performing model. The complexity of the selected model is compared with the reduced linear time‐invariant (LTI) model obtained by applying a combination of the eigensystem realization algorithm (ERA) and observer/Kalman filter identification (OKID) on the same I/O dataset. The I/O data are obtained from applying the MFAC controllers on a nonlinear three‐tank system (3TS) to track various desired references. The results indicate that the model complexity optimization can also be used for selecting an appropriate MFAC data model with optimal order to reduce the complexity and computational burden of the MFAC control algorithms. |
|---|---|
| AbstractList | This paper discusses a strategy for optimizing the complexity of time‐varying data models as used in model‐free adaptive control (MFAC). Here the dynamic linearization in compact form (CFDL), partial form (PFDL), and full form (FFDL) are considered as data models used to describe input/output (I/O) data sets. These data models are built only for control purpose and can have various degrees of complexity depending on the size of the considered time‐window as well as the underlying algorithms. The methodology is to compare the performance of the data models according to an evaluation criterion, to analyze the order of different data models based on bias‐variance trade‐off, and to select the best‐performing model. The complexity of the selected model is compared with the reduced linear time‐invariant (LTI) model obtained by applying a combination of the eigensystem realization algorithm (ERA) and observer/Kalman filter identification (OKID) on the same I/O dataset. The I/O data are obtained from applying the MFAC controllers on a nonlinear three‐tank system (3TS) to track various desired references. The results indicate that the model complexity optimization can also be used for selecting an appropriate MFAC data model with optimal order to reduce the complexity and computational burden of the MFAC control algorithms. |
| Author | Söffker, Dirk Salighe, Soheil |
| Author_xml | – sequence: 1 givenname: Soheil orcidid: 0009-0007-7239-6840 surname: Salighe fullname: Salighe, Soheil email: soheil.salighe@uni-due.de organization: University of Duisburg‐Essen – sequence: 2 givenname: Dirk surname: Söffker fullname: Söffker, Dirk organization: University of Duisburg‐Essen |
| BookMark | eNqFkE1OwzAQhS1UJNrClrUvkGI7iRsvq4o_qRUsuo8msS0ZOXaw00JYcQTOyEmaqvztWM2M9L03T2-CRs47hdAlJTNKCLtqoWlmjLCMEJKzEzSmnM6TOeF09Gc_Q5MYnwae8pSM0XbtpbK49k1r1avpeuzbzjTmDTrjHfYaq-et2YFVrsOyd9CYGiy2xikI35SEDnBzMIp4G5XExh3Pz_cPHZTCIGFw3anhj-uCt-foVION6uJrTtHm5nqzvEtWD7f3y8UqqQvBEqkBZMUKSgopSJVzmmUiHZLXmaJSFBkFJonmOYFcMFpVWSrmnDMtqzqXlKVTNDva1sHHGJQu22AaCH1JSXnorDx0Vv50NgjEUfBirOr_ocvHxXr9q90DNod2Qg |
| Cites_doi | 10.1109/DDCLS58216.2023.10167283 10.1016/j.cognition.2010.10.004 10.3390/app13169145 10.1007/s40435-018-00502-9 10.23919/ECC51009.2020.9143691 10.23919/ECC.2009.7075120 10.1109/TNNLS.2020.3043711 10.1007/s42417-022-00671-0 10.1002/asjc.2555 10.1007/s40313-014-0108-8 10.1007/978-3-030-47439-3_19 10.1109/ACC.2000.876648 10.1007/978-3-319-67168-0_14 10.3390/machines6020012 10.1109/CCTA49430.2022.9966098 10.1201/b15752 10.1016/j.amc.2023.127910 10.1109/ACC.1997.611815 10.1016/S0894-9166(13)60024-5 10.1007/978-3-319-67168-0_20 10.1109/ACCESS.2021.3065311 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s). Proceedings in Applied Mathematics and Mechanics published by Wiley‐VCH GmbH. |
| Copyright_xml | – notice: 2024 The Author(s). Proceedings in Applied Mathematics and Mechanics published by Wiley‐VCH GmbH. |
| DBID | 24P AAYXX CITATION |
| DOI | 10.1002/pamm.202400052 |
| DatabaseName | Wiley Online Library Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1617-7061 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_pamm_202400052 PAMM202400052 |
| Genre | article |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OC 24P 31~ 33P 3SF 50Y 50Z 51W 51X 52M 52N 52O 52P 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACCZN ACGFS ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OK1 P2W P2X P4D Q.N Q11 QB0 R.K RNS ROL RWI RX1 SUPJJ TUS UB1 V2E V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAYXX ABJNI ADMLS AEYWJ AGHNM AGYGG AMVHM CITATION O8X |
| ID | FETCH-LOGICAL-c892-dfaadb28108d90b5614493021c4e1d9841a2d0f650a5921bb4397662fdbc5d123 |
| IEDL.DBID | 24P |
| ISSN | 1617-7061 |
| IngestDate | Sat Nov 29 06:04:03 EST 2025 Wed Jan 22 17:14:00 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c892-dfaadb28108d90b5614493021c4e1d9841a2d0f650a5921bb4397662fdbc5d123 |
| ORCID | 0009-0007-7239-6840 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpamm.202400052 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1002_pamm_202400052 wiley_primary_10_1002_pamm_202400052_PAMM202400052 |
| PublicationCentury | 2000 |
| PublicationDate | December 2024 2024-12-00 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings in applied mathematics and mechanics |
| PublicationYear | 2024 |
| References | 2021; 9 2019; 7 2018; 6 2021; 54 2023; 13 2013; 26 2023; 11 2011; 118 2023 2011 2022 2020 2023; 447 2009 2022; 24 1970; 22 2014; 25 2017 2000; 2 1997; 1 2004 2020; 33 2013 2012; 4 e_1_2_7_6_1 Chi R. (e_1_2_7_3_1) 2021; 54 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 |
| References_xml | – volume: 13 issue: 16 year: 2023 article-title: An improved model‐free adaptive nonlinear control and its automatic application publication-title: Applied Science – volume: 22 year: 1970 article-title: Relationship between state‐space and input‐output models via observer markov parameters – start-page: 1 year: 2004 end-page: 6 article-title: Single degree of freedom system identification using Least Squares, Subspace, & ERA‐OKID identification algorithms – volume: 4 start-page: 157 year: 2012 end-page: 165 article-title: Identification and vibration control of a flexible structure – volume: 7 start-page: 636 year: 2019 end-page: 643 article-title: A modified observer/kalman filter identification (OKID) algorithm employing output residuals publication-title: International Journal of Dynamics and Control – volume: 447 year: 2023 article-title: An improved model‐free adaptive control for nonlinear systems: An LMI approach publication-title: Applied Mathematics and Computation – volume: 54 start-page: 1 year: 2021 end-page: 13 article-title: Data‐driven dynamic internal model control publication-title: IEEE Transactions on Cybernetics – volume: 1 start-page: 343 year: 1997 end-page: 344 article-title: The model‐free learning adaptive control of a class of SISO nonlinear systems – volume: 25 start-page: 161 year: 2014 end-page: 173 article-title: Experimental identification and control of a cantilever beam using ERA/OKID with a LQR controller publication-title: Journal of Control, Automation and Electrical Systems – volume: 6 start-page: 12 issue: 2 year: 2018 article-title: System identification algorithm for computing the modal parameters of linear mechanical systems publication-title: Machines – start-page: 165 year: 2017 end-page: 177 article-title: An all‐interaction matrix approach to linear and bilinear system identification – volume: 33 start-page: 1727 issue: 4 year: 2020 end-page: 1739 article-title: Model‐free adaptive control for unknown MIMO nonaffine nonlinear discrete‐time systems with experimental validation publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 9 start-page: 41441 year: 2021 end-page: 41455 article-title: An improved partial‐form MFAC design for discrete‐time nonlinear systems with neural networks publication-title: IEEE Access – volume: 118 start-page: 2 issue: 1 year: 2011 end-page: 16 article-title: Conceptual complexity and the bias/variance tradeoff publication-title: Cognition – start-page: 21 year: 2011 end-page: 29 article-title: Experimental investigation on a new hybrid mass damper – start-page: 498 year: 2022 end-page: 503 article-title: Data driven based modeling and fault detection for the MATLAB/Simulink turbofan engine: An ARX model approach – volume: 24 start-page: 1688 issue: 4 year: 2022 end-page: 1699 article-title: Different‐factor compact‐form model‐free adaptive control with neural networks for MIMO nonlinear systems publication-title: Asian Journal of Control – year: 2020 – volume: 26 start-page: 255 issue: 3 year: 2013 end-page: 262 article-title: Dynamic modeling and active control of flexible plate based on the input‐output data publication-title: Acta Mechanica Solida Sinica – start-page: 249 year: 2017 end-page: 260 article-title: Generalized framework of OKID for linear state‐space model identification – volume: 11 start-page: 1797 issue: 4 year: 2023 end-page: 1806 article-title: Benefits of okid in system realization with low amount of samples publication-title: Journal of Vibration Engineering & Technologies – volume: 2 start-page: 986 year: 2000 end-page: 990 article-title: Performance of an observer state‐space identification in the presence of mild nonlinearities – start-page: 1036 year: 2023 end-page: 1043 article-title: Parameter optimization design of MFAC based on Reinforcement Learning – start-page: 47 year: 2020 end-page: 52 article-title: Improved model‐free adaptive control method using recursive least‐squares estimation algorithm – start-page: 4564 year: 2009 end-page: 4569 article-title: Improvement of optimal high‐gain PI‐observer design – year: 2013 – ident: e_1_2_7_6_1 doi: 10.1109/DDCLS58216.2023.10167283 – ident: e_1_2_7_27_1 doi: 10.1016/j.cognition.2010.10.004 – ident: e_1_2_7_8_1 doi: 10.3390/app13169145 – ident: e_1_2_7_11_1 – ident: e_1_2_7_12_1 doi: 10.1007/s40435-018-00502-9 – ident: e_1_2_7_25_1 – ident: e_1_2_7_5_1 doi: 10.23919/ECC51009.2020.9143691 – ident: e_1_2_7_20_1 doi: 10.23919/ECC.2009.7075120 – ident: e_1_2_7_22_1 doi: 10.1109/TNNLS.2020.3043711 – ident: e_1_2_7_13_1 doi: 10.1007/s42417-022-00671-0 – ident: e_1_2_7_9_1 doi: 10.1002/asjc.2555 – ident: e_1_2_7_15_1 doi: 10.1007/s40313-014-0108-8 – ident: e_1_2_7_26_1 doi: 10.1007/978-3-030-47439-3_19 – ident: e_1_2_7_18_1 doi: 10.1109/ACC.2000.876648 – ident: e_1_2_7_23_1 doi: 10.1007/978-3-319-67168-0_14 – ident: e_1_2_7_16_1 – ident: e_1_2_7_14_1 doi: 10.3390/machines6020012 – ident: e_1_2_7_24_1 doi: 10.1109/CCTA49430.2022.9966098 – ident: e_1_2_7_19_1 – volume: 54 start-page: 1 year: 2021 ident: e_1_2_7_3_1 article-title: Data‐driven dynamic internal model control publication-title: IEEE Transactions on Cybernetics – ident: e_1_2_7_2_1 doi: 10.1201/b15752 – ident: e_1_2_7_7_1 doi: 10.1016/j.amc.2023.127910 – ident: e_1_2_7_21_1 doi: 10.1109/ACC.1997.611815 – ident: e_1_2_7_17_1 doi: 10.1016/S0894-9166(13)60024-5 – ident: e_1_2_7_10_1 doi: 10.1007/978-3-319-67168-0_20 – ident: e_1_2_7_4_1 doi: 10.1109/ACCESS.2021.3065311 |
| SSID | ssj0021630 |
| Score | 2.2753341 |
| Snippet | This paper discusses a strategy for optimizing the complexity of time‐varying data models as used in model‐free adaptive control (MFAC). Here the dynamic... |
| SourceID | crossref wiley |
| SourceType | Index Database Publisher |
| Title | Model complexity optimization of equivalent dynamical linearization data models used in model‐free adaptive control |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpamm.202400052 |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1617-7061 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021630 issn: 1617-7061 databaseCode: DRFUL dateStart: 20020101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07a8MwEBYl6dAOfZemj6Ch0MnEVmzZGkPb0CEJoaSQzUiWBIHGeTguHfsT-hv7S3qSHTeZCi14sEAS4ny6-87cfYfQrXYjeEK431RDgKI5cwTVbUeHhPIwoQBC7JfuhYNBNB6z4UYVf8EPUf1wMzfD2mtzwbnIWj-koXM-NZXkJgfSDcAI1z2vHRq9Jv6wCrkAbdiSSPDTTgiua03b6JLW9vott7QJU62f6R7-_4RH6KDEmLhTKMUx2lHpCdrvVwSt2SnKTQ-0V2wTytU7IHE8A9sxLYsy8UxjtcgnoIXgk7AsutbDluZMEFyXs0x2KbatdDKcZ0riSVoMvz4-9VIpzCWfG3OKy4T4MzTqPo7un5yyA4OTRIw4UnMuBYk8N5LMFYY01GdtkGriK0-yyPc4ka4GkMcDRjwhLLqhREuRBBJ84jmqpbNUXSAsiNJUBLAho74SkgUiSCIaEikgYAloA92t5R_PC56NuGBUJrGRY1zJsYGIFfov0-Jhp9-vRpd_WXSF9sx7kbxyjWqrZa5u0G7ytppky6ZVtCaqPzx3X3rfbcXYGQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fS8MwEA-yCeqD_8X5Nw-CT2Vd1qbN41DHxHYMmbC3kjQJDFw311V89CP4Gf0kXtquuidBhL6kpKFcLne_C3e_Q-hK2z48HpxvqiFA0ZxZguq2pT1CuRdTACH5Tgdev--PRmxQZhOaWpiCH6K6cDMnI7fX5oCbC-nmN2vojE9MKblJgrRdsMJ1B3TJraH67WP3KaiiLgAceVUkuGrLA--1ZG60SXN1hRXP9BOp5q6mu_MPP7mLtkuciTuFYuyhNZXso62wImlND1Bm-qA94zypXL0BGsdTsB-TsjATTzVWL9kYNBH8EpZF53pY0vwUBNjlLJNhivN2OinOUiXxOCmGn-8feq4U5pLPjEnFZVL8IRp274Y3PavswmDFPiOW1JxLQfyW7UtmC0Mc6rA2iDV2VEsy32lxIm0NQI-7jLSEyBEOJVqK2JXgF49QLZkm6hhhQZSmwoUFGXWUkMwVbuxTj0gBQYtLG-h6uQHRrODaiApWZRIZOUaVHBuI5FL_ZVo06IRhNTr5y0eXaKM3DIMouO8_nKJN875IZjlDtcU8U-doPX5djNP5Ral3X3uq2_Y |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1PS8MwFA8yRfTgf3H-zUHwVNZlbdochzoUt9HDDruVpElg4Lq6ruLRj-Bn9JP4knbVnQQReklJQnhJ3vu98N7vIXSt3RC-AO431eCgaM4cQXXH0QGhPEgogBC70_1gOAzHYxZV0YQmF6bkh6gf3MzNsPraXHCVSd36Zg3N-NSkkpsgSNcHLbzu-aBoDbmzF9U-F8ANmxMJhtoJwHYteRtd0lodv2KXfuJUa2h6u_-wxD20U6FM3C2PxT5aU-kB2h7UFK35ISpMFbRnbEPK1RtgcTwD7TGt0jLxTGP1UkzgHIJVwrKsWw9TmkWBe131MvGl2BbTyXGRK4knadn8fP_Qc6UwlzwzChVXIfFHaNS7H90-OFUNBicJGXGk5lwKErbdUDJXGNpQj3VArImn2pKFXpsT6WqAedxnpC2ExTeUaCkSX4JVPEaNdJaqE4QFUZoKHyZk1FNCMl_4SUgDIgW4LD5topvlBsRZybQRl5zKJDZyjGs5NhGxUv-lWxx1B4O6dfqXQVdoM7rrxf3H4dMZ2jK_y0iWc9RYzAt1gTaS18Ukn1_aQ_cFTg3Z3w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+complexity+optimization+of+equivalent+dynamical+linearization+data+models+used+in+model%E2%80%90free+adaptive+control&rft.jtitle=Proceedings+in+applied+mathematics+and+mechanics&rft.au=Salighe%2C+Soheil&rft.au=S%C3%B6ffker%2C+Dirk&rft.date=2024-12-01&rft.issn=1617-7061&rft.eissn=1617-7061&rft.volume=24&rft.issue=4&rft_id=info:doi/10.1002%2Fpamm.202400052&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_pamm_202400052 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-7061&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-7061&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-7061&client=summon |